Discussion:
Roadmap / Scope
(too old to reply)
Andreas Mueller
2013-01-10 22:29:54 UTC
Permalink
Hi everybody.
Long and general mail coming on.
TL;DR version: do we want to plan for the future?

Today I read this blog post on the scope of open source projects:
http://brianegranger.com/?p=249

It made me dig up an old mail draft I wrote after reading a post by Gael:
http://www.slideshare.net/eleddy/i-wish-i-knew-how-to-quit-you


I realized then that we don't really make any plans. Sometimes people
(mostly me)
tag some issues to certain releases but that's it.
There is some vague idea, pushed mainly by Gaël that we want to do a
1.0 in the not-so-far future, but there is no list of features that we
want (I created
a milestone and assigned random bits, not sure if any one noticed).

I wanted to ask: should we try to make plans? We get a lot of PRs and
have more and more contributors and I think it might be nice
if we had some form of road map to give everything a bit more direction.

I know that people mostly contribute algorithms they are using in research,
and that is great, because that makes for high-quality code.
I am not sure, though, for how long the "hey look, I coded this cool
estimator
which I used in my latest paper" strategy is feasible.

There are also several classes of algorithms that we haven't really
touched on that
might be in the scope and might "creep" into sklearn without really any
discussion.

I'm thinking mainly about ranking, collaborative filtering, structured
prediction (in particular sequences),
metric learning, graphical models (and some more).


Maybe the project is still small enough that our current approach might
work,
but with more and more new contributors, I thought it might be good to
think a little
bit about where we want to go.


Cheers,
Andy
Andrew Winterman
2013-01-10 23:05:49 UTC
Permalink
I am +1 on a plan, since it's helpful for newbies like myself in
orienting themselves, and helps focus developer effort.

That said, the breadth of this project is pretty amazing, and it's
probably a good idea to keep classifiers which are up-and-coming in
academia available. I guess I'm voting for both.

:)

Andrew

On Thu, Jan 10, 2013 at 2:29 PM, Andreas Mueller
Post by Andreas Mueller
Hi everybody.
Long and general mail coming on.
TL;DR version: do we want to plan for the future?
http://brianegranger.com/?p=249
http://www.slideshare.net/eleddy/i-wish-i-knew-how-to-quit-you
I realized then that we don't really make any plans. Sometimes people
(mostly me)
tag some issues to certain releases but that's it.
There is some vague idea, pushed mainly by Gaël that we want to do a
1.0 in the not-so-far future, but there is no list of features that we
want (I created
a milestone and assigned random bits, not sure if any one noticed).
I wanted to ask: should we try to make plans? We get a lot of PRs and
have more and more contributors and I think it might be nice
if we had some form of road map to give everything a bit more direction.
I know that people mostly contribute algorithms they are using in research,
and that is great, because that makes for high-quality code.
I am not sure, though, for how long the "hey look, I coded this cool
estimator
which I used in my latest paper" strategy is feasible.
There are also several classes of algorithms that we haven't really
touched on that
might be in the scope and might "creep" into sklearn without really any
discussion.
I'm thinking mainly about ranking, collaborative filtering, structured
prediction (in particular sequences),
metric learning, graphical models (and some more).
Maybe the project is still small enough that our current approach might
work,
but with more and more new contributors, I thought it might be good to
think a little
bit about where we want to go.
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Andrew Winterman
714 362 6823
Lars Buitinck
2013-01-10 23:21:24 UTC
Permalink
Post by Andreas Mueller
I wanted to ask: should we try to make plans? We get a lot of PRs and
have more and more contributors and I think it might be nice
if we had some form of road map to give everything a bit more direction.
I know that people mostly contribute algorithms they are using in research,
and that is great, because that makes for high-quality code.
I am not sure, though, for how long the "hey look, I coded this cool
estimator which I used in my latest paper" strategy is feasible.
What we could do is determine a focus for the next release other than
"add more features", like:
* implement Python 3 support
* fix outstanding API issues, like sparse matrix support for some estimators.

That would be a step towards a 1.0.
--
Lars Buitinck
Scientific programmer, ILPS
University of Amsterdam
Robert Layton
2013-01-10 23:29:00 UTC
Permalink
Post by Andreas Mueller
Post by Andreas Mueller
I wanted to ask: should we try to make plans? We get a lot of PRs and
have more and more contributors and I think it might be nice
if we had some form of road map to give everything a bit more direction.
I know that people mostly contribute algorithms they are using in
research,
Post by Andreas Mueller
and that is great, because that makes for high-quality code.
I am not sure, though, for how long the "hey look, I coded this cool
estimator which I used in my latest paper" strategy is feasible.
What we could do is determine a focus for the next release other than
* implement Python 3 support
* fix outstanding API issues, like sparse matrix support for some estimators.
That would be a step towards a 1.0.
--
Lars Buitinck
Scientific programmer, ILPS
University of Amsterdam
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
I would say to not worry about the addition of algorithms, and have 1.0 as
being a API/python3/sparse release as Lars said.
I don't think that holding off a big release because it doesn't contain
algorithm X is a good idea, as there are plenty of algorithms we don't have
yet, even important ones (depending on your definition of important).

- Robert
Vlad Niculae
2013-01-11 00:08:43 UTC
Permalink
I completely agree with everyone regarding 1.0 and I really think we should
make a clear list of issues for this (just saying API is pretty vague).
However there is life after the 1.0, and I think Andy's message was more
about that kind of long-term decisions.

We should avoid getting features that aren't used by users, and equally
well features that aren't of interest to active developers. I don't feel
like scikit-learn is at risk at the moment, but we must avoid ending up
with (more?) semi-orphaned modules that most developers are afraid to touch
in case an issue is reported.

Vlad
Post by Robert Layton
Post by Andreas Mueller
Post by Andreas Mueller
I wanted to ask: should we try to make plans? We get a lot of PRs and
have more and more contributors and I think it might be nice
if we had some form of road map to give everything a bit more direction.
I know that people mostly contribute algorithms they are using in
research,
Post by Andreas Mueller
and that is great, because that makes for high-quality code.
I am not sure, though, for how long the "hey look, I coded this cool
estimator which I used in my latest paper" strategy is feasible.
What we could do is determine a focus for the next release other than
* implement Python 3 support
* fix outstanding API issues, like sparse matrix support for some estimators.
That would be a step towards a 1.0.
--
Lars Buitinck
Scientific programmer, ILPS
University of Amsterdam
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
I would say to not worry about the addition of algorithms, and have 1.0 as
being a API/python3/sparse release as Lars said.
I don't think that holding off a big release because it doesn't contain
algorithm X is a good idea, as there are plenty of algorithms we don't have
yet, even important ones (depending on your definition of important).
- Robert
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Olivier Grisel
2013-01-11 00:19:17 UTC
Permalink
Post by Vlad Niculae
I completely agree with everyone regarding 1.0 and I really think we should
make a clear list of issues for this (just saying API is pretty vague).
However there is life after the 1.0, and I think Andy's message was more
about that kind of long-term decisions.
Agreed.
Post by Vlad Niculae
We should avoid getting features that aren't used by users, and equally well
features that aren't of interest to active developers. I don't feel like
scikit-learn is at risk at the moment, but we must avoid ending up with
(more?) semi-orphaned modules that most developers are afraid to touch in
case an issue is reported.
Very true.

--
Olivier
http://twitter.com/ogrisel - http://github.com/ogrisel
Gilles Louppe
2013-01-11 08:27:37 UTC
Permalink
Hi there,

I agree with you on having long-term goals. We should indeed define
where we want the library to go.

Before going into such introspection though, I think we should get
more insight about how our current user base is using Scikit-Learn. I
have been involved in the project for more than one year and a half
and I have to say that I unfortunately don't know well our users
(beside the unhappy ones who report bugs).

- How many users do we actually have? a few dozens? hundreds? thousands?
- What are they actually using the library for?
- How are they doing that?
- Is that what we want and how we want them to do?
- ... does this match with our vision for the project?

Those are some questions for which I would be curious to get answers.

I got some insight this year when I made my students use Scikit-Learn
for assignments in our local Machine Learning course. They started
from zero knowledge in Python and in Machine Learning, and they end up
tackling a real world problem (I made them compete locally on the
Impermium dataset, trying to detect insults in social commentary).
Once the assignments were done, I asked them to give me some feedback
about Scikit-Learn to see what they like and dislike. I was planning
on sending you email to give you that feedback, but here is the
opportunity. So here it is:

+ They quickly got acquainted with the library. It was easy and
straightforward for most of them. (I actually received a lot less
questions in comparison with when were using Matlab.)
+ They found the documentation very well structured and very helpful.
+ They were glad to find nearly all the algorithms we study in class
(both not all though).
+ They liked the well-structured and common API between the
estimators. This indeed made the library a lot easier to use and
learn.
- Some had hard time to understand the error messages. I indeed agree
that some error messages may look cryptic for novices.
- Not all estimators are sparse-compatible.
- Some basic estimators are missing. They complained about the lack of
neural networks. Some generic ensemble methods are also missing
(Stacking and Bagging are two easy but very useful ensemble methods
that we should have in my opinion).
- Some try to implement their own estimators, but they failed to make
it compatible with our grid-search module. (I think what is missing
here is some documentation regarding what is the expected interface.)

Overall this feedback is very positive. If our goal is to build a
toolbox such that non-experts can quickly get theirs hands on machine
learning and have results quite easily, then I think we are not that
far from that! However, this also highlights some important lacking
features in the library that I think we should fix before going for
1.0.

What is your opinion on this?

Cheers,

Gilles
Post by Olivier Grisel
Post by Vlad Niculae
I completely agree with everyone regarding 1.0 and I really think we should
make a clear list of issues for this (just saying API is pretty vague).
However there is life after the 1.0, and I think Andy's message was more
about that kind of long-term decisions.
Agreed.
Post by Vlad Niculae
We should avoid getting features that aren't used by users, and equally well
features that aren't of interest to active developers. I don't feel like
scikit-learn is at risk at the moment, but we must avoid ending up with
(more?) semi-orphaned modules that most developers are afraid to touch in
case an issue is reported.
Very true.
--
Olivier
http://twitter.com/ogrisel - http://github.com/ogrisel
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Andreas Mueller
2013-01-11 09:21:12 UTC
Permalink
Hi everyone.
I am pretty psyched that I got so much feedback :)
I think planning for a road towards 1.0 and also beyond would be good.

Thanks Gilles for sharing your insights.
They match quit well what I had in mind :)
Also, I think getting an idea about the userbase would be great - though
it is a bit hard.

We *could* put a survey on the website. Not sure if there is any other
method?


Also, I totally agree with Vlad: we must focus on user interests and
also on our own qualifications.
I'm not entirely happy with the state of HMM, GP and DPGMM/VBGMM currently.


So there are two goals I heard a lot: sparse matrix support everywhere
and Python 3 support.
These sound also pretty good to me.


As I think grid search an model evaluation is one of the core features
of sklearn, I have been
working on that quite a bit lately and totally agree with Olivier that
there is still some worthwhile work to do.

Also the "write your own estimator" docs and general sklearn API should
be a pretty high priority, I think.

As I see one of the applications of sklearn in teaching, I think it
would be great if we could get all the "ML 101"
algorithms together. We might disagree somewhat on what those are, but I
think we can find some common ground.
Neural networks, and general ensembles are the first that come to my
mind. And also logistic regression.
I think it is a bit weird that we don't have multinomial logistic
regression in sklearn.

Ok so what do we do now?
I think we should decide if and how we want to ask our users.

Then we should find a way to set up a roadmap. I am not sure if the
github issue tracker is the right way to do it.
Should we instead use the github wiki?

Best,
Andy
Olivier Grisel
2013-01-11 10:13:14 UTC
Permalink
Post by Gilles Louppe
Hi there,
I agree with you on having long-term goals. We should indeed define
where we want the library to go.
Before going into such introspection though, I think we should get
more insight about how our current user base is using Scikit-Learn. I
have been involved in the project for more than one year and a half
and I have to say that I unfortunately don't know well our users
(beside the unhappy ones who report bugs).
- How many users do we actually have? a few dozens? hundreds? thousands?
- What are they actually using the library for?
- How are they doing that?
- Is that what we want and how we want them to do?
- ... does this match with our vision for the project?
+1 We need to come up with a survey form using google doc's form (now
renamed to google drive forms) and advertise it here and over our
social networks.

http://google.about.com/od/toolsfortheoffice/ss/forms_googledoc.htm

Any volunteer to start a draft?

We should embargo its diffusion over social networks until we agree on
the questions but we can share it on the mailing list to
collaboratively edit / review the survey together.
Post by Gilles Louppe
Those are some questions for which I would be curious to get answers.
I got some insight this year when I made my students use Scikit-Learn
for assignments in our local Machine Learning course. They started
from zero knowledge in Python and in Machine Learning, and they end up
tackling a real world problem (I made them compete locally on the
Impermium dataset, trying to detect insults in social commentary).
Once the assignments were done, I asked them to give me some feedback
about Scikit-Learn to see what they like and dislike. I was planning
on sending you email to give you that feedback, but here is the
+ They quickly got acquainted with the library. It was easy and
straightforward for most of them. (I actually received a lot less
questions in comparison with when were using Matlab.)
+ They found the documentation very well structured and very helpful.
+ They were glad to find nearly all the algorithms we study in class
(both not all though).
+ They liked the well-structured and common API between the
estimators. This indeed made the library a lot easier to use and
learn.
- Some had hard time to understand the error messages. I indeed agree
that some error messages may look cryptic for novices.
- Not all estimators are sparse-compatible.
- Some basic estimators are missing. They complained about the lack of
neural networks. Some generic ensemble methods are also missing
(Stacking and Bagging are two easy but very useful ensemble methods
that we should have in my opinion).
- Some try to implement their own estimators, but they failed to make
it compatible with our grid-search module. (I think what is missing
here is some documentation regarding what is the expected interface.)
Overall this feedback is very positive. If our goal is to build a
toolbox such that non-experts can quickly get theirs hands on machine
learning and have results quite easily, then I think we are not that
far from that!
Thanks very much for the feedback.
Post by Gilles Louppe
However, this also highlights some important lacking
features in the library that I think we should fix before going for
1.0.
What is your opinion on this?
Indeed, so high priority for the 1.0:

- python 3 support
- polish support for sparse matrices + better error messages on invalid inputs
- polish grid search / model selection + better documentation on the expectation
- add missing yet basic ensemble strategies: bagging and stacking

--
Olivier
http://twitter.com/ogrisel - http://github.com/ogrisel
Andreas Mueller
2013-01-11 10:35:05 UTC
Permalink
Post by Olivier Grisel
+1 We need to come up with a survey form using google doc's form (now
renamed to google drive forms) and advertise it here and over our
social networks.
http://google.about.com/od/toolsfortheoffice/ss/forms_googledoc.htm
Why not surveymonkey? I haven't used google doc forms but I found
surveymonkey working quite well.
Post by Olivier Grisel
Any volunteer to start a draft?
We should embargo its diffusion over social networks until we agree on
the questions but we can share it on the mailing list to
collaboratively edit / review the survey together.
what do you think about publishing it on the website?
Not sure we reach a sensible fraction of the users over social media / ML.
Leon Palafox
2013-01-11 10:43:30 UTC
Permalink
Hey Guys, I'll be happy to start a draft.

So far I have the following questions:

1. How many users do we actually have? a few dozens? hundreds? thousands?
(I think this will be a bit tricky)
2. What is your Academic Background (CS Related/Non CS related (Biology,
Physics, etc))
3. What is your current ocupation (Industry/Academy)
4. What is your main use of Sklearn
5. Which are the libraries/packages you use the most
6. Which algorithms would you like to see implemented

I can do it both in Forms and Monkey Survey, I think Monkey Survey has
some features behind a paywall while forms has less features but it
completely free.

Do you have any other questions?


On Fri, Jan 11, 2013 at 7:35 PM, Andreas Mueller
Post by Andreas Mueller
Post by Olivier Grisel
+1 We need to come up with a survey form using google doc's form (now
renamed to google drive forms) and advertise it here and over our
social networks.
http://google.about.com/od/toolsfortheoffice/ss/forms_googledoc.htm
Why not surveymonkey? I haven't used google doc forms but I found
surveymonkey working quite well.
Post by Olivier Grisel
Any volunteer to start a draft?
We should embargo its diffusion over social networks until we agree on
the questions but we can share it on the mailing list to
collaboratively edit / review the survey together.
what do you think about publishing it on the website?
Not sure we reach a sensible fraction of the users over social media / ML.
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
Robert Layton
2013-01-11 10:48:51 UTC
Permalink
I love the survey idea. I'd like to add some free text fields around "how
do you use sklearn", "what would you like to see in sklearn". Having
restricted questions is good, but the text may give us some answers we
weren't expecting.
Post by Leon Palafox
Hey Guys, I'll be happy to start a draft.
1. How many users do we actually have? a few dozens? hundreds? thousands?
(I think this will be a bit tricky)
2. What is your Academic Background (CS Related/Non CS related (Biology,
Physics, etc))
3. What is your current ocupation (Industry/Academy)
4. What is your main use of Sklearn
5. Which are the libraries/packages you use the most
6. Which algorithms would you like to see implemented
I can do it both in Forms and Monkey Survey, I think Monkey Survey has
some features behind a paywall while forms has less features but it
completely free.
Do you have any other questions?
Post by Andreas Mueller
Post by Olivier Grisel
+1 We need to come up with a survey form using google doc's form (now
renamed to google drive forms) and advertise it here and over our
social networks.
http://google.about.com/od/toolsfortheoffice/ss/forms_googledoc.htm
Why not surveymonkey? I haven't used google doc forms but I found
surveymonkey working quite well.
Post by Olivier Grisel
Any volunteer to start a draft?
We should embargo its diffusion over social networks until we agree on
the questions but we can share it on the mailing list to
collaboratively edit / review the survey together.
what do you think about publishing it on the website?
Not sure we reach a sensible fraction of the users over social media / ML.
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Andreas Mueller
2013-01-11 10:55:00 UTC
Permalink
Post by Leon Palafox
Hey Guys, I'll be happy to start a draft.
1. How many users do we actually have? a few dozens? hundreds?
thousands? (I think this will be a bit tricky)
2. What is your Academic Background (CS Related/Non CS related
(Biology, Physics, etc))
3. What is your current ocupation (Industry/Academy)
4. What is your main use of Sklearn
5. Which are the libraries/packages you use the most
6. Which algorithms would you like to see implemented
I can do it both in Forms and Monkey Survey, I think Monkey Survey has
some features behind a paywall while forms has less features but it
completely free.
Do you have any other questions?
Hi Leon.
Thanks for volunteering :)
My guess would be that it is good to limit the number of questions, as
people quickly lose interest.

For 1, I would lower bound it by some function of the surveys we get ;)
It is not a question that we put on the survey any how. Except if you
want to crowd-source it ;)
2+3+6 seem good too me, 4 is to imprecise. Not sure what we gain from 5.

My questions would be:
7) What do you find most annoying about sklearn
8) what do you like best about sklearn
9) which features do you use most
10) which features (not algorithms) would you like to see.
Andreas Mueller
2013-01-14 08:29:34 UTC
Permalink
Hey everybody.
I'd really like to get some more feedback from the other core devs about
the survey idea.
What do you think about it?

Also, if we do it, it would be great if we could find one of the core
devs to oversee it and see that it
gets on the website in time and everything.
I should really be working on my thesis right now, so I don't want to
take charge of that (in addition
to doing the rest of the release).

Thanks,
Andy
Jaques Grobler
2013-01-14 10:19:01 UTC
Permalink
Hey Andy

I really like the idea of the survey. It would definitely help focus the
project better considering it's rapid growth..
It's a good way to stay up to speed with which features people would like
to see and would
actually use, and which ones aren't used much. The ones that aren't used
often will in the
long run cause problems with maintaining them.

Regarding it's implementation, a link to it on the sidebar seems like a
nice place to me on the docs.
I'd be happy to help with overseeing it and making sure it gets up quickly.

Regards, Jaques
Post by Andreas Mueller
Hey everybody.
I'd really like to get some more feedback from the other core devs about
the survey idea.
What do you think about it?
Also, if we do it, it would be great if we could find one of the core
devs to oversee it and see that it
gets on the website in time and everything.
I should really be working on my thesis right now, so I don't want to
take charge of that (in addition
to doing the rest of the release).
Thanks,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122412
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Andreas Mueller
2013-01-14 10:40:36 UTC
Permalink
Hi Jaques.
Thanks for volunteering. I was actually thinking more about a banner
that people can't overlook ;)
But if you make it flashy enough in the sidebar, that would also be ok,
I guess.
Anyhow, before any serious work gets done, I'd like to hear the opinion
of Mathieu, Lars, Alex, Gael, Peter and other people I forgot ;)

Cheers,
Andy
Jaques Grobler
2013-01-14 11:23:26 UTC
Permalink
Banner would be nice too.. open to any suggestions there ..
Regards
Post by Andreas Mueller
Hi Jaques.
Thanks for volunteering. I was actually thinking more about a banner
that people can't overlook ;)
But if you make it flashy enough in the sidebar, that would also be ok,
I guess.
Anyhow, before any serious work gets done, I'd like to hear the opinion
of Mathieu, Lars, Alex, Gael, Peter and other people I forgot ;)
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122412
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Wei LI
2013-01-15 02:10:41 UTC
Permalink
A survey would be quite helpful to make a detailed roadmap. Maybe we can
also put the survey on somewhere machine learning guys gather like Kaggle.

I wanna share some thoughts on adding new algorithms. More and more papers
are published for machine learning, and plenty of new algorithms are
proposed to replace old ones. There have been debate about whether to
include one algorithm or not in sklearn and I believe there will be more
and more such discussion because of those new papers. For the addition of
new algorithms, maybe some new estimators could be added in a 3rd party
contrib repo where every algorithms can be added as long as it have been
benchmarked and follows the structure of sklearn. Sklearn provides a good
framework and utilities to implement new algorithms, and makes some common
tasks like cross validation easy. In the main repo, only those time-tested
algorithms or those voted most algorithms from contrib repo are included.(I
think it is just what R has done?). For those users who use it for research
purposes, it may allow them a new place to share benchmark algorithms or
their own algorithms rather than matlabcentral.

Best Regards,
Wei LI
Post by Jaques Grobler
Banner would be nice too.. open to any suggestions there ..
Regards
Post by Andreas Mueller
Hi Jaques.
Thanks for volunteering. I was actually thinking more about a banner
that people can't overlook ;)
But if you make it flashy enough in the sidebar, that would also be ok,
I guess.
Anyhow, before any serious work gets done, I'd like to hear the opinion
of Mathieu, Lars, Alex, Gael, Peter and other people I forgot ;)
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122412
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122412
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Robert Layton
2013-01-15 06:18:40 UTC
Permalink
Post by Wei LI
A survey would be quite helpful to make a detailed roadmap. Maybe we can
also put the survey on somewhere machine learning guys gather like Kaggle.
I wanna share some thoughts on adding new algorithms. More and more papers
are published for machine learning, and plenty of new algorithms are
proposed to replace old ones. There have been debate about whether to
include one algorithm or not in sklearn and I believe there will be more
and more such discussion because of those new papers. For the addition of
new algorithms, maybe some new estimators could be added in a 3rd party
contrib repo where every algorithms can be added as long as it have been
benchmarked and follows the structure of sklearn. Sklearn provides a good
framework and utilities to implement new algorithms, and makes some common
tasks like cross validation easy. In the main repo, only those time-tested
algorithms or those voted most algorithms from contrib repo are included.(I
think it is just what R has done?). For those users who use it for research
purposes, it may allow them a new place to share benchmark algorithms or
their own algorithms rather than matlabcentral.
Best Regards,
Wei LI
I believe a project like that exists, but I cannot remember the name of it.

On the survey, I'd be happy to help analyse the results, but probably won't
have time to set it up.
--
Public key at: http://pgp.mit.edu/ Search for this email address and select
the key from "2011-08-19" (key id: 54BA8735)
Gael Varoquaux
2013-01-20 15:51:17 UTC
Permalink
Post by Andreas Mueller
I'd really like to get some more feedback from the other core devs about
the survey idea.
What do you think about it?
It's a good idea, but I would make it really clear that the scikit is a
doacracy and the survey is purely indicative. I am not interested in
getting a shopping list of feature requests (I get enough of that in my
email, via issues or private emails), but more to know what our strength
and weaknesses are.

Thanks for putting this forward,

Gaël
Andreas Mueller
2013-01-17 13:13:27 UTC
Permalink
Hi all.
Leon, did you set up a Forms already?

Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.

Cheers,
Andy
Leon Palafox
2013-01-17 13:18:08 UTC
Permalink
Hello,

I have some sort of form ready in google docs.

https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ

Let me know your suggestions

Leon


On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller
Post by Andreas Mueller
Hi all.
Leon, did you set up a Forms already?
Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
Jaques Grobler
2013-01-17 13:26:59 UTC
Permalink
Looks good.. should there perhaps be an 'other' tickbox for the first
question (maybe with a textbox to specify?) - or is that overkill?

also, shouldn't TI be IT? Only Texas Instruments and non english version of
IT comes to mind for me.. I mind be being dumb here :D

Thanks for doing this
Post by Leon Palafox
Hello,
I have some sort of form ready in google docs.
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ
Let me know your suggestions
Leon
On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller <
Post by Andreas Mueller
Hi all.
Leon, did you set up a Forms already?
Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Andreas Mueller
2013-01-17 13:27:54 UTC
Permalink
Hi Leon.
Looks good, thanks :)

Maybe some others have some ideas for questions?

I think we might get more out of people if we have more multiple choice
or radio buttons,
as these are way easier to click.

Maybe we could also have something about priorities, like "which of the
following should we make a priority:
- out of core and online learning
- python3 support
- sparse matrix support
- semisupervised learning
- ranking
- deep learning an neural networks
- closer ties with other libraries like pandas and scikit-image
"
or something like that - basically ask them if they feel the same stuff
is important that
just came up in the discussion.
The list just came from the top of my head, so dont take it to literal ;)

Jaques, could you maybe make a proposal on how to put it on the website?
I'd prefer a banner. Not sure what others think.

Cheers,
Andy
Post by Leon Palafox
Hello,
I have some sort of form ready in google docs.
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ
Let me know your suggestions
Leon
On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller
Hi all.
Leon, did you set up a Forms already?
Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET <http://ASP.NET>,
C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Jaques Grobler
2013-01-17 13:31:18 UTC
Permalink
Sure, I can do that

Regards,
J
Post by Andreas Mueller
Hi Leon.
Looks good, thanks :)
Maybe some others have some ideas for questions?
I think we might get more out of people if we have more multiple choice or
radio buttons,
as these are way easier to click.
Maybe we could also have something about priorities, like "which of the
- out of core and online learning
- python3 support
- sparse matrix support
- semisupervised learning
- ranking
- deep learning an neural networks
- closer ties with other libraries like pandas and scikit-image
"
or something like that - basically ask them if they feel the same stuff is
important that
just came up in the discussion.
The list just came from the top of my head, so dont take it to literal ;)
Jaques, could you maybe make a proposal on how to put it on the website?
I'd prefer a banner. Not sure what others think.
Cheers,
Andy
Hello,
I have some sort of form ready in google docs.
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ
Let me know your suggestions
Leon
On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller <
Post by Andreas Mueller
Hi all.
Leon, did you set up a Forms already?
Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
MVPs and experts. ON SALE this month only -- learn more at:http://p.sf.net/sfu/learnmore_122712
_______________________________________________
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Robert Layton
2013-01-17 21:46:35 UTC
Permalink
Post by Jaques Grobler
Sure, I can do that
Regards,
J
Post by Andreas Mueller
Hi Leon.
Looks good, thanks :)
Maybe some others have some ideas for questions?
I think we might get more out of people if we have more multiple choice
or radio buttons,
as these are way easier to click.
Maybe we could also have something about priorities, like "which of the
- out of core and online learning
- python3 support
- sparse matrix support
- semisupervised learning
- ranking
- deep learning an neural networks
- closer ties with other libraries like pandas and scikit-image
"
or something like that - basically ask them if they feel the same stuff
is important that
just came up in the discussion.
The list just came from the top of my head, so dont take it to literal ;)
Jaques, could you maybe make a proposal on how to put it on the website?
I'd prefer a banner. Not sure what others think.
Cheers,
Andy
Hello,
I have some sort of form ready in google docs.
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ
Let me know your suggestions
Leon
On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller <
Post by Andreas Mueller
Hi all.
Leon, did you set up a Forms already?
Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
MVPs and experts. ON SALE this month only -- learn more at:http://p.sf.net/sfu/learnmore_122712
_______________________________________________
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Great set of questions. A few typos and suggestions (marked with S):

Question 1:
Missing question mark in "subquestion"

Question 2:
Missing question mark in "subquestion"
academy -> academia
hobby -> hobbyist
S: Maybe instead of "hybrid", have a text box for "other"?
S: I would also tend to not have any questions as mandatory, while it would
be good to have answers to all, we don't *need* answers to them all.

Question 3:
Algorithms -> algorithms
"this library" -> scikit-learn
Missing question mark in "subquestion"


Question 4:
Missing question mark for both major and subquestion
thing -> think
Sklearn -> scikit-learn
S: I would either remove the "fast implementation" bit, or make it the
focus of the question. The main and subquestions here ask very different
things. Something like "Which features hinder development with
scikit-learn?"

Question 5:
Question mark.
S: Subquestion "What are we doing that you would like to see continue?"

Question 6:
Question mark.
S: Subquestion: "Features such as sampling, utility functions, dataset
loading, etc."

Question 7:
Question mark.
I'm not sure question 7 is needed in its current form. If the options were
broad concepts like "Coding quality", "Integration with other libraries",
"scalability", "efficiency", then the question would work. As it stands,
this question is answered by the above questions.
--
Public key at: http://pgp.mit.edu/ Search for this email address and select
the key from "2011-08-19" (key id: 54BA8735)
Andreas Mueller
2013-01-18 14:47:42 UTC
Permalink
Post by Robert Layton
Question mark.
I'm not sure question 7 is needed in its current form. If the options
were broad concepts like "Coding quality", "Integration with other
libraries", "scalability", "efficiency", then the question would work.
As it stands, this question is answered by the above questions.
I thought it would be good to give some ideas to the people answering
the survey.
Also I thought it would be good to have more multiple choice for lazy
people.
At the moment it is quite redundant with the questions above, that is true.
Andreas Mueller
2013-01-18 15:10:38 UTC
Permalink
Btw, if we do keep 7 in some form, it should be checkbox, not a radio
button.
Mathieu Blondel
2013-01-18 15:37:26 UTC
Permalink
For the 1.0 release, I would concentrate on machine learning classics,
essentially supervised and unsupervised learning methods (i.e. the
methods for which our API is robust and well-tested). I would keep
structured prediction, semi-supervised learning, active learning or
anything that requires API design decisions for the 2.0 roadmap. Even
if we concentrate on supervised and unsupervised learning, there are
still many things to do: a neural network module, more ensemble
estimators, more API consistency, the grid search API we discussed a
few months ago, etc...

Modules I would consider for removal are gaussian processes,
semi-supervised learning and HMMs. We could move them to a
scikit-learn-bleeding-edge repository.

Mathieu
Lars Buitinck
2013-01-18 16:25:16 UTC
Permalink
Post by Mathieu Blondel
Modules I would consider for removal are gaussian processes,
semi-supervised learning and HMMs. We could move them to a
scikit-learn-bleeding-edge repository.
+1 for getting rid of the HMMs; I never liked their API, and the
MultinomialHMM in particular is quite useless (as the docs admit).
--
Lars Buitinck
Scientific programmer, ILPS
University of Amsterdam
Andreas Mueller
2013-01-18 16:38:01 UTC
Permalink
Post by Lars Buitinck
Post by Mathieu Blondel
Modules I would consider for removal are gaussian processes,
semi-supervised learning and HMMs. We could move them to a
scikit-learn-bleeding-edge repository.
+1 for getting rid of the HMMs; I never liked their API, and the
MultinomialHMM in particular is quite useless (as the docs admit).
I'm also +1 on removing the HMMs as they do have a completely different API
and try to deal with sequences - I'd say sequences are out of the scope
of sklearn.

I don't see the problem with semi-supervised algorithm actually. The API
is pretty straight-forward
and there are well-established algorithms like self-taught learning.

For GP: Someone volunteered on the ML recently to take a shot at them.
Let's wait and see, I would say.
Ronnie Ghose
2013-01-18 16:43:59 UTC
Permalink
+1 for removing HMM from 1.0 I would still like them accessible somewhere
though.

+1 for semi-supervised to be kept in 1.0 release. It doesn't seem very
developed. Seems self-explanatory.


On Fri, Jan 18, 2013 at 11:38 AM, Andreas Mueller
Post by Andreas Mueller
Post by Lars Buitinck
Post by Mathieu Blondel
Modules I would consider for removal are gaussian processes,
semi-supervised learning and HMMs. We could move them to a
scikit-learn-bleeding-edge repository.
+1 for getting rid of the HMMs; I never liked their API, and the
MultinomialHMM in particular is quite useless (as the docs admit).
I'm also +1 on removing the HMMs as they do have a completely different API
and try to deal with sequences - I'd say sequences are out of the scope
of sklearn.
I don't see the problem with semi-supervised algorithm actually. The API
is pretty straight-forward
and there are well-established algorithms like self-taught learning.
For GP: Someone volunteered on the ML recently to take a shot at them.
Let's wait and see, I would say.
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Mathieu Blondel
2013-01-18 16:58:20 UTC
Permalink
On Sat, Jan 19, 2013 at 1:38 AM, Andreas Mueller
Post by Andreas Mueller
I don't see the problem with semi-supervised algorithm actually. The API
is pretty straight-forward
and there are well-established algorithms like self-taught learning.
The API feels natural and is flexible but retrieving all labeled
examples and all unlabeled examples (an operation which is common for
semi-supervised algorithms) is prone to memory copy, in particular in
the sparse case:
https://github.com/scipy/scipy/blob/master/scipy/sparse/compressed.py#L387

I think we have never really taken the time to study the pros and cons
of different possible APIs.

Mathieu
Jaques Grobler
2013-01-18 19:26:21 UTC
Permalink
Regarding the banner, the first screenshot I posted is actually a fixed one
that scrolls along with the page. I like the idea of it being less
disco-intense
but catches your eye as you scroll
Post by Mathieu Blondel
On Sat, Jan 19, 2013 at 1:38 AM, Andreas Mueller
Post by Andreas Mueller
I don't see the problem with semi-supervised algorithm actually. The API
is pretty straight-forward
and there are well-established algorithms like self-taught learning.
The API feels natural and is flexible but retrieving all labeled
examples and all unlabeled examples (an operation which is common for
semi-supervised algorithms) is prone to memory copy, in particular in
https://github.com/scipy/scipy/blob/master/scipy/sparse/compressed.py#L387
I think we have never really taken the time to study the pros and cons
of different possible APIs.
Mathieu
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Satrajit Ghosh
2013-01-18 19:47:26 UTC
Permalink
hi jaques,

in that case i like it (so it stays always on the top of the screen. i
would still recommend for something simpler perhaps without the shading,
just an outline of the box.

cheers,

satra
Post by Jaques Grobler
Regarding the banner, the first screenshot I posted is actually a fixed one
that scrolls along with the page. I like the idea of it being less
disco-intense
but catches your eye as you scroll
Post by Mathieu Blondel
On Sat, Jan 19, 2013 at 1:38 AM, Andreas Mueller
Post by Andreas Mueller
I don't see the problem with semi-supervised algorithm actually. The API
is pretty straight-forward
and there are well-established algorithms like self-taught learning.
The API feels natural and is flexible but retrieving all labeled
examples and all unlabeled examples (an operation which is common for
semi-supervised algorithms) is prone to memory copy, in particular in
https://github.com/scipy/scipy/blob/master/scipy/sparse/compressed.py#L387
I think we have never really taken the time to study the pros and cons
of different possible APIs.
Mathieu
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Robert Layton
2013-01-18 22:09:13 UTC
Permalink
hi jaques,
in that case i like it (so it stays always on the top of the screen. i
would still recommend for something simpler perhaps without the shading,
just an outline of the box.
cheers,
satra
Post by Jaques Grobler
Regarding the banner, the first screenshot I posted is actually a fixed one
that scrolls along with the page. I like the idea of it being less
disco-intense
but catches your eye as you scroll
Post by Mathieu Blondel
On Sat, Jan 19, 2013 at 1:38 AM, Andreas Mueller
Post by Andreas Mueller
I don't see the problem with semi-supervised algorithm actually. The
API
Post by Andreas Mueller
is pretty straight-forward
and there are well-established algorithms like self-taught learning.
The API feels natural and is flexible but retrieving all labeled
examples and all unlabeled examples (an operation which is common for
semi-supervised algorithms) is prone to memory copy, in particular in
https://github.com/scipy/scipy/blob/master/scipy/sparse/compressed.py#L387
I think we have never really taken the time to study the pros and cons
of different possible APIs.
Mathieu
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Banner: I liked the green as a colour, don't mind it standing out, but we
should probably share the direct link rather than say "go to homepage and
click the survey button".
Time taken: The survey takes about 2 or 3 minutes if you are doing it
correctly, but know what you are talking about.
Notification text: Saying "7 question survey" maybe good, at least then
people know its length before they start.


I wonder also if we should accommodate the survey to people that *don't use
scikit-learn* for some reason... why don't they?
Perhaps that is a survey for a different time though...
--
Public key at: http://pgp.mit.edu/ Search for this email address and select
the key from "2011-08-19" (key id: 54BA8735)
Lars Buitinck
2013-01-19 07:56:49 UTC
Permalink
Post by Jaques Grobler
Regarding the banner, the first screenshot I posted is actually a fixed one
that scrolls along with the page. I like the idea of it being less
disco-intense but catches your eye as you scroll
Ok. In that case, +1 for the orange banner, it fits in with the rest
of the page.
--
Lars Buitinck
Scientific programmer, ILPS
University of Amsterdam
Gael Varoquaux
2013-01-20 16:03:10 UTC
Permalink
Post by Jaques Grobler
Regarding the banner, the first screenshot I posted is actually a fixed one
that scrolls along with the page. I like the idea of it being less
disco-intense
but catches your eye as you scroll
I don't really like this idea, as we must cater for small screens. I look
at the scikit-learn website from my mobile on a regular basis.

G
Gael Varoquaux
2013-01-20 16:01:22 UTC
Permalink
Post by Andreas Mueller
For GP: Someone volunteered on the ML recently to take a shot at them.
Let's wait and see, I would say.
GPs are currently not good, but we should really keep them and strive to
improve them: they pop up quite often in machine learning settings and it
is useful to have them in the scikit.
Olivier Grisel
2013-01-17 13:27:31 UTC
Permalink
Post by Leon Palafox
Hello,
I have some sort of form ready in google docs.
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ
For the first question:

- Self taught
- I am still at high school

+ add hobbyist as a third option to the academic / industry question.

More comments later.

--
Olivier
http://twitter.com/ogrisel - http://github.com/ogrisel
Didier Vila
2013-01-17 22:30:02 UTC
Permalink
All, thanks for your good work. I just completed the form as an user (
and not core). Didier



Didier Vila, PhD | Risk | CapQuest Group Ltd | Fleet 27 | Rye Close |
Fleet | Hampshire | GU51 2QQ | Tel: 0871 574 7989 | Fax: 0871 574 2992 |
Email: ***@capquestco.com <mailto:***@capquestco.com>



From: Leon Palafox [mailto:***@gmail.com]
Sent: 17 January 2013 13:18
To: scikit-learn-***@lists.sourceforge.net
Subject: Re: [Scikit-learn-general] Roadmap / Scope



Hello,



I have some sort of form ready in google docs.



https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdld
pMEZlZ1B1YkE6MQ



Let me know your suggestions



Leon



On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller
<***@ais.uni-bonn.de> wrote:

Hi all.
Leon, did you set up a Forms already?

Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.


Cheers,
Andy

------------------------------------------------------------------------
------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current

with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
MVPs and experts. ON SALE this month only -- learn more at:
http://p.sf.net/sfu/learnmore_122712

_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-***@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory

+81-3-5841-8436

University of Tokyo
Tokyo, Japan.
Leon Palafox
2013-01-18 04:22:54 UTC
Permalink
Hello, I just finished with most of the edits.

Regards
Post by Didier Vila
All, thanks for your good work. I just completed the form as an user (
and not core). Didier****
** **
Didier Vila, PhD | Risk | CapQuest Group Ltd | Fleet 27 | Rye
Close | Fleet | Hampshire | GU51 2QQ | Tel: 0871 574 7989 | Fax: 0871 574
** **
*Sent:* 17 January 2013 13:18
*Subject:* Re: [Scikit-learn-general] Roadmap / Scope****
** **
Hello,****
** **
I have some sort of form ready in google docs.****
** **
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ
****
** **
Let me know your suggestions****
** **
Leon****
** **
On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller <
Hi all.
Leon, did you set up a Forms already?
Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.****
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current***
*
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712****
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general****
****
** **
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory****
+81-3-5841-8436****
University of Tokyo
Tokyo, Japan.****
** **
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
Jaques Grobler
2013-01-18 13:47:21 UTC
Permalink
Satrajit Ghosh
2013-01-18 13:57:47 UTC
Permalink
sending without embedded image.
hi jaques,
looks good. two possible options
1. put it right below the current banner (across the page, below the
logo).
2. change the background to the orange or red. something that brings
attention to it.
cheers,
satra
Ronnie Ghose
2013-01-18 14:06:38 UTC
Permalink
+1 to a different color. The blue blends in with the bg.
Post by Satrajit Ghosh
sending without embedded image.
hi jaques,
looks good. two possible options
1. put it right below the current banner (across the page, below the
logo).
2. change the background to the orange or red. something that brings
attention to it.
cheers,
satra
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Andreas Mueller
2013-01-18 14:27:44 UTC
Permalink
Post by Ronnie Ghose
+1 to a different color. The blue blends in with the bg.
+1
Jaques Grobler
2013-01-18 14:29:41 UTC
Permalink
Yeah the first colour was just a random choice :) Was just to get things
going with this
Post by Ronnie Ghose
+1 to a different color. The blue blends in with the bg.
+1
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Andreas Mueller
2013-01-20 16:39:43 UTC
Permalink
Jaques, could you wrap up a PR?
Leon Palafox
2013-01-20 20:20:28 UTC
Permalink
Hi Andy,

Could you send me a gmail address?SO I can add you as a collaborator in the
form

Leon


On Mon, Jan 21, 2013 at 1:39 AM, Andreas Mueller
Post by Andreas Mueller
Jaques, could you wrap up a PR?
Andreas Mueller
2013-01-21 12:48:28 UTC
Permalink
Ok, so I updated the form a bit:
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ#gid=0
I removed the last question and added the possible answers as a hint to
the "what would you like to see" question.

I want to release tonight and I would like to publish the survey with it.
Any more comments are welcome.

Jaques: if you could please get something together today, that would be
most appreciated ;)
xinfan meng
2013-01-21 12:51:49 UTC
Permalink
Should "in the contributors free time" be "in the contributors' free time" ?


On Mon, Jan 21, 2013 at 8:48 PM, Andreas Mueller
Post by Andreas Mueller
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ#gid=0
I removed the last question and added the possible answers as a hint to
the "what would you like to see" question.
I want to release tonight and I would like to publish the survey with it.
Any more comments are welcome.
Jaques: if you could please get something together today, that would be
most appreciated ;)
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122412
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Best Wishes
--------------------------------------------
Meng Xinfan蒙新泛
Institute of Computational Linguistics
Department of Computer Science & Technology
School of Electronic Engineering & Computer Science
Peking University
Beijing, 100871
China
Andreas Mueller
2013-01-21 12:54:00 UTC
Permalink
Post by xinfan meng
Should "in the contributors free time" be "in the contributors' free time" ?
Yes, I think so. Thanks.
Jaques Grobler
2013-01-21 13:17:35 UTC
Permalink
Hey Andy - on it now.. Sorry I had some immigration issues this morning..
Will make it shortly

J
Post by Andreas Mueller
Post by xinfan meng
Should "in the contributors free time" be "in the contributors' free time" ?
Yes, I think so. Thanks.
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122412
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Andreas Mueller
2013-01-21 13:24:34 UTC
Permalink
Thanks a lot and sorry for rushing you :-/
Jaques Grobler
2013-01-21 18:44:08 UTC
Permalink
My github has been refusing to connect, but seems to be working now.. just
slowly..
Post by Andreas Mueller
Thanks a lot and sorry for rushing you :-/
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122412
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Jaques Grobler
2013-01-21 18:44:53 UTC
Permalink
Here's the PR with online build :
https://github.com/scikit-learn/scikit-learn/pull/1603
Post by Jaques Grobler
My github has been refusing to connect, but seems to be working now.. just
slowly..
Post by Andreas Mueller
Thanks a lot and sorry for rushing you :-/
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122412
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Robert Layton
2013-01-21 21:31:31 UTC
Permalink
Post by Jaques Grobler
https://github.com/scikit-learn/scikit-learn/pull/1603
Post by Jaques Grobler
My github has been refusing to connect, but seems to be working now..
just slowly..
Post by Andreas Mueller
Thanks a lot and sorry for rushing you :-/
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122412
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122412
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
I'm happy with the survey as it stands. Some small comments if there is
still time:
- "features" shouldn't be capitalised. It is arguable if "Academic
Background" should be - but probably not.
- The text should probably be no wider than the textbox underneath it.

Other than that, all looks good.

On the scikit-learn usage, the "correct" English would be to use it as a
Post by Jaques Grobler
The programmers at Microsoft are working really hard.
Google has the world's most popular search engine.
The API of scikit-learn will be stable by the 1.0 release.
The exception is if you are calling it a "package" or "build" and
scikit-learn becomes an adjective.
Post by Jaques Grobler
The scikit-learn package contains a lot of algorithms.
There is a problem with the scikit-learn build.
Hope that helps,

Robert
--
Public key at: http://pgp.mit.edu/ Search for this email address and select
the key from "2011-08-19" (key id: 54BA8735)
Andreas Mueller
2013-01-21 21:55:35 UTC
Permalink
Post by Robert Layton
I'm happy with the survey as it stands. Some small comments if there
- "features" shouldn't be capitalised. It is arguable if "Academic
Background" should be - but probably not.
- The text should probably be no wider than the textbox underneath it.
Other than that, all looks good.
Thanks.
Should be fixed now :)

Ronnie Ghose
2013-01-18 14:29:28 UTC
Permalink
hmmmm what about one that does not share color with the scikit webpage at
all. it would look horrible - and as a result stand out....

0 - neutral


On Fri, Jan 18, 2013 at 9:27 AM, Andreas Mueller
Post by Ronnie Ghose
+1 to a different color. The blue blends in with the bg.
+1
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
xinfan meng
2013-01-18 14:40:45 UTC
Permalink
How long would the survey take? If it takes less than 2 minutes, then I
think it is better to say "a one minute survey" instead of "a quick survey".
Post by Ronnie Ghose
hmmmm what about one that does not share color with the scikit webpage at
all. it would look horrible - and as a result stand out....
0 - neutral
Post by Ronnie Ghose
+1 to a different color. The blue blends in with the bg.
+1
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Best Wishes
--------------------------------------------
Meng Xinfan蒙新泛
Institute of Computational Linguistics
Department of Computer Science & Technology
School of Electronic Engineering & Computer Science
Peking University
Beijing, 100871
China
Andreas Mueller
2013-01-18 14:44:07 UTC
Permalink
Post by xinfan meng
How long would the survey take? If it takes less than 2 minutes, then
I think it is better to say "a one minute survey" instead of "a quick
survey".
Not sure. Take it and we will know ;)
Jaques Grobler
2013-01-18 14:43:19 UTC
Permalink
@Ronnie - here are some colours that don't really fit the theme versions

pink Loading Image...
cyan Loading Image...
green Loading Image...
red Loading Image...

Stil using layout from Satrajit's suggestion here

J
Post by Ronnie Ghose
hmmmm what about one that does not share color with the scikit webpage at
all. it would look horrible - and as a result stand out....
0 - neutral
Post by Ronnie Ghose
+1 to a different color. The blue blends in with the bg.
+1
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Jaques Grobler
2013-01-18 14:45:39 UTC
Permalink
@xinfan - good question :) Not sure how long it would take yet - but I'll
make a note of that
Post by Jaques Grobler
@Ronnie - here are some colours that don't really fit the theme versions
pink http://i49.tinypic.com/286zac1.png
cyan http://i50.tinypic.com/ao8d42.png
green http://i46.tinypic.com/2rc05si.png
red http://i50.tinypic.com/nd91le.png
Stil using layout from Satrajit's suggestion here
J
Post by Ronnie Ghose
hmmmm what about one that does not share color with the scikit webpage at
all. it would look horrible - and as a result stand out....
0 - neutral
On Fri, Jan 18, 2013 at 9:27 AM, Andreas Mueller <
Post by Ronnie Ghose
+1 to a different color. The blue blends in with the bg.
+1
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Ronnie Ghose
2013-01-18 14:45:23 UTC
Permalink
+1 red or green since they stick out really obviously
Post by Jaques Grobler
@Ronnie - here are some colours that don't really fit the theme versions
pink http://i49.tinypic.com/286zac1.png
cyan http://i50.tinypic.com/ao8d42.png
green http://i46.tinypic.com/2rc05si.png
red http://i50.tinypic.com/nd91le.png
Stil using layout from Satrajit's suggestion here
J
Post by Ronnie Ghose
hmmmm what about one that does not share color with the scikit webpage at
all. it would look horrible - and as a result stand out....
0 - neutral
On Fri, Jan 18, 2013 at 9:27 AM, Andreas Mueller <
Post by Ronnie Ghose
+1 to a different color. The blue blends in with the bg.
+1
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Satrajit Ghosh
2013-01-18 15:00:10 UTC
Permalink
hi jaques,

here is a quick fiddle to play around with the markup/colors. i just used
twitter bootstrap's alert css embedded it in a div after the header.

http://jsfiddle.net/Fgc39/

cheers,

satra
Post by Jaques Grobler
@Ronnie - here are some colours that don't really fit the theme versions
pink http://i49.tinypic.com/286zac1.png
cyan http://i50.tinypic.com/ao8d42.png
green http://i46.tinypic.com/2rc05si.png
red http://i50.tinypic.com/nd91le.png
Stil using layout from Satrajit's suggestion here
J
Post by Ronnie Ghose
hmmmm what about one that does not share color with the scikit webpage at
all. it would look horrible - and as a result stand out....
0 - neutral
On Fri, Jan 18, 2013 at 9:27 AM, Andreas Mueller <
Post by Ronnie Ghose
+1 to a different color. The blue blends in with the bg.
+1
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Lars Buitinck
2013-01-18 15:18:33 UTC
Permalink
Post by Jaques Grobler
@Ronnie - here are some colours that don't really fit the theme versions
pink http://i49.tinypic.com/286zac1.png
cyan http://i50.tinypic.com/ao8d42.png
green http://i46.tinypic.com/2rc05si.png
red http://i50.tinypic.com/nd91le.png
-1, all of these stand out a bit too much for my taste. Would it be
possible to let the banner scroll along with the page? That way, it
starts to stand out only when you start scrolling, which I think would
be friendlier.

Also, s/The Scikit-Learn/scikit-learn/.
--
Lars Buitinck
Scientific programmer, ILPS
University of Amsterdam
Satrajit Ghosh
2013-01-18 15:55:25 UTC
Permalink
http://jsfiddle.net/Fgc39/1/

all controlled via the css 'alert'.

cheers,

satra
Post by Lars Buitinck
Post by Jaques Grobler
@Ronnie - here are some colours that don't really fit the theme versions
pink http://i49.tinypic.com/286zac1.png
cyan http://i50.tinypic.com/ao8d42.png
green http://i46.tinypic.com/2rc05si.png
red http://i50.tinypic.com/nd91le.png
-1, all of these stand out a bit too much for my taste. Would it be
possible to let the banner scroll along with the page? That way, it
starts to stand out only when you start scrolling, which I think would
be friendlier.
Also, s/The Scikit-Learn/scikit-learn/.
--
Lars Buitinck
Scientific programmer, ILPS
University of Amsterdam
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Jaques Grobler
2013-01-18 14:26:59 UTC
Permalink
Sorry about the embedded one - wasn't thinking there. French weather is
freezing my brain

Here's the image I sent earlier Loading Image...

Here's the new one with Satrajit's suggestions

Loading Image...
Post by Satrajit Ghosh
sending without embedded image.
hi jaques,
looks good. two possible options
1. put it right below the current banner (across the page, below the
logo).
2. change the background to the orange or red. something that brings
attention to it.
cheers,
satra
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Satrajit Ghosh
2013-01-18 13:56:05 UTC
Permalink
hi jaques,

looks good. two possible options

1. put it right below the current banner (across the page, below the logo).
2. change the background to the orange or red. something that brings
attention to it.

cheers,

satra
Post by
Hey guys.. I need some feedback from ya'll on the banner..
This is a very simple quick one, just to get a feedback base going.
Let me know regarding position, size, text, colour etc.
[image: Imágenes integradas 1]
All feedback welcome :)
Regards,
Jaques
Post by Leon Palafox
Hello, I just finished with most of the edits.
Regards
Post by Didier Vila
All, thanks for your good work. I just completed the form as an user (
and not core). Didier****
** **
Didier Vila, PhD | Risk | CapQuest Group Ltd | Fleet 27 | Rye
Close | Fleet | Hampshire | GU51 2QQ | Tel: 0871 574 7989 | Fax: 0871 574
** **
*Sent:* 17 January 2013 13:18
*Subject:* Re: [Scikit-learn-general] Roadmap / Scope****
** **
Hello,****
** **
I have some sort of form ready in google docs.****
** **
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ
****
** **
Let me know your suggestions****
** **
Leon****
** **
On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller <
Hi all.
Leon, did you set up a Forms already?
Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.****
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current*
***
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712****
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general****
****
** **
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory****
+81-3-5841-8436****
University of Tokyo
Tokyo, Japan.****
** **
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Lars Buitinck
2013-01-18 14:14:31 UTC
Permalink
I'm not one for web design, but we usually spell scikit-learn
all-lowercase, and certainly never with a capital L. Also, I prefer
"scikit-learn" to "the scikit-learn", but I'm under the impression that the
French devs on the team prefer the latter ;)
Post by
Hey guys.. I need some feedback from ya'll on the banner..
This is a very simple quick one, just to get a feedback base going.
Let me know regarding position, size, text, colour etc.
[image: Imágenes integradas 1]
All feedback welcome :)
Regards,
Jaques
Post by Leon Palafox
Hello, I just finished with most of the edits.
Regards
Post by Didier Vila
All, thanks for your good work. I just completed the form as an user (
and not core). Didier****
** **
Didier Vila, PhD | Risk | CapQuest Group Ltd | Fleet 27 | Rye
Close | Fleet | Hampshire | GU51 2QQ | Tel: 0871 574 7989 | Fax: 0871 574
** **
*Sent:* 17 January 2013 13:18
*Subject:* Re: [Scikit-learn-general] Roadmap / Scope****
** **
Hello,****
** **
I have some sort of form ready in google docs.****
** **
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ
****
** **
Let me know your suggestions****
** **
Leon****
** **
On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller <
Hi all.
Leon, did you set up a Forms already?
Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.****
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current*
***
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712****
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general****
****
** **
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory****
+81-3-5841-8436****
University of Tokyo
Tokyo, Japan.****
** **
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Lars Buitinck
Scientific programmer, ILPS
University of Amsterdam
Andreas Mueller
2013-01-21 12:48:37 UTC
Permalink
Post by Lars Buitinck
I'm not one for web design, but we usually spell scikit-learn
all-lowercase, and certainly never with a capital L. Also, I prefer
"scikit-learn" to "the scikit-learn", but I'm under the impression
that the French devs on the team prefer the latter ;)
+1 for all lowercase.
Didier Vila
2013-01-18 14:26:54 UTC
Permalink
My comment is that there are two much boxes on the top of the screen : one box should be good.



Didier Vila, PhD | Risk | CapQuest Group Ltd | Fleet 27 | Rye Close | Fleet | Hampshire | GU51 2QQ | Tel: 0871 574 7989 | Fax: 0871 574 2992 | Email: ***@capquestco.com <mailto:***@capquestco.com>



From: Jaques Grobler [mailto:***@gmail.com]
Sent: 18 January 2013 13:47
To: Scikit-Learn Mailing List
Subject: Re: [Scikit-learn-general] Roadmap / Scope



Hey guys.. I need some feedback from ya'll on the banner..

This is a very simple quick one, just to get a feedback base going.

Let me know regarding position, size, text, colour etc.







All feedback welcome :)



Regards,

Jaques



2013/1/18 Leon Palafox <***@gmail.com>

Hello, I just finished with most of the edits.



Regards



On Fri, Jan 18, 2013 at 7:30 AM, Didier Vila <***@capquestco.com> wrote:

All, thanks for your good work. I just completed the form as an user ( and not core). Didier



Didier Vila, PhD | Risk | CapQuest Group Ltd | Fleet 27 | Rye Close | Fleet | Hampshire | GU51 2QQ | Tel: 0871 574 7989 | Fax: 0871 574 2992 | Email: ***@capquestco.com <mailto:***@capquestco.com>



From: Leon Palafox [mailto:***@gmail.com]
Sent: 17 January 2013 13:18
To: scikit-learn-***@lists.sourceforge.net
Subject: Re: [Scikit-learn-general] Roadmap / Scope



Hello,



I have some sort of form ready in google docs.



https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ



Let me know your suggestions



Leon



On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller <***@ais.uni-bonn.de> wrote:

Hi all.
Leon, did you set up a Forms already?

Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.


Cheers,
Andy

------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current

with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
MVPs and experts. ON SALE this month only -- learn more at:
http://p.sf.net/sfu/learnmore_122712

_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-***@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory

+81-3-5841-8436 <tel:%2B81-3-5841-8436>

University of Tokyo
Tokyo, Japan.




------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
MVPs and experts. ON SALE this month only -- learn more at:
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-***@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory

+81-3-5841-8436 <tel:%2B81-3-5841-8436>

University of Tokyo
Tokyo, Japan.




------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
SALE $99.99 this month only -- learn more at:
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-***@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general



This e-mail is intended solely for the addressee, is strictly confidential and may also be legally privileged. If you are not the addressee please do not read, print, re-transmit, store or act in reliance on it or any attachments. Instead, please email it back to the sender and then immediately permanently delete it. E-mail communications cannot be guaranteed to be secure or error free, as information could be intercepted, corrupted, amended, lost, destroyed, arrive late or incomplete, or contain viruses. We do not accept liability for any such matters or their consequences. Anyone who communicates with us by e-mail is taken to accept the risks in doing so. Opinions, conclusions and other information in this e-mail and any attachments are solely those of the author and do not represent those of CapQuest Group Limited or any of its subsidiaries unless otherwise stated. CapQuest Group Limited (registered number 4936030), CapQuest Debt Recovery Limited (registered number 3772278), CapQuest Investments Limited (registered number 5245825), CapQuest Asset Management Limited (registered number 5245829) and CapQuest Mortgage Servicing Limited (registered number 05821008) are all limited companies registered in England and Wales with their registered offices at Fleet 27, Rye Close, Fleet, Hampshire, GU51 2QQ. Each company is a separate and independent legal entity. None of the companies have any liability for each other's acts or omissions. This communication is from the company named in the sender's details above.
Andreas Mueller
2013-01-20 15:00:15 UTC
Permalink
Hi Leon.
I'd really like to get this finished now.
Could you maybe send me the info to edit the form and get the results?
Thanks,
Andy
Post by Leon Palafox
Hello,
I have some sort of form ready in google docs.
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ
Let me know your suggestions
Leon
On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller
Hi all.
Leon, did you set up a Forms already?
Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET <http://ASP.NET>,
C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Olivier Grisel
2013-01-11 10:51:33 UTC
Permalink
Post by Andreas Mueller
Post by Olivier Grisel
+1 We need to come up with a survey form using google doc's form (now
renamed to google drive forms) and advertise it here and over our
social networks.
http://google.about.com/od/toolsfortheoffice/ss/forms_googledoc.htm
Why not surveymonkey? I haven't used google doc forms but I found
surveymonkey working quite well.
Because google forms is completely free. The free plan of surveymonkey
is limited to 100 answers:

http://surveymonkey.com/pricing/upgrade/quickview/
Post by Andreas Mueller
Post by Olivier Grisel
Any volunteer to start a draft?
We should embargo its diffusion over social networks until we agree on
the questions but we can share it on the mailing list to
collaboratively edit / review the survey together.
what do you think about publishing it on the website?
Not sure we reach a sensible fraction of the users over social media / ML.
We should do both.

--
Olivier
http://twitter.com/ogrisel - http://github.com/ogrisel
Jake Vanderplas
2013-01-11 00:17:51 UTC
Permalink
Hi all,
One component of a good roadmap would be to make sure we emphasize good
implementations of fundamental ML algorithms. One area I'd like to work
on is density estimation: KDE in particular is an important component of
a wide variety of algorithms, and there is not (to my knowledge) a good
flexible & scalable KDE implementation currently in the scipy universe.
I think we're well-poised to offer that, but it would require an
improved ball tree/kd tree implementation. I have some good ideas about
how to do this, but need to find the time to make it happen.

If there are any other fundamental algorithms that sklearn is currently
weak in, we should keep those in mind as well.
Jake
Post by Andreas Mueller
Post by Andreas Mueller
I wanted to ask: should we try to make plans? We get a lot of
PRs and
Post by Andreas Mueller
have more and more contributors and I think it might be nice
if we had some form of road map to give everything a bit more
direction.
Post by Andreas Mueller
I know that people mostly contribute algorithms they are using
in research,
Post by Andreas Mueller
and that is great, because that makes for high-quality code.
I am not sure, though, for how long the "hey look, I coded this cool
estimator which I used in my latest paper" strategy is feasible.
What we could do is determine a focus for the next release other than
* implement Python 3 support
* fix outstanding API issues, like sparse matrix support for some estimators.
That would be a step towards a 1.0.
--
Lars Buitinck
Scientific programmer, ILPS
University of Amsterdam
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET <http://ASP.NET>,
C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
I would say to not worry about the addition of algorithms, and have
1.0 as being a API/python3/sparse release as Lars said.
I don't think that holding off a big release because it doesn't
contain algorithm X is a good idea, as there are plenty of algorithms
we don't have yet, even important ones (depending on your definition
of important).
- Robert
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Gael Varoquaux
2013-01-20 15:46:24 UTC
Permalink
One area I'd like to work on is density estimation: KDE in particular
is an important component of a wide variety of algorithms, and there is
not (to my knowledge) a good flexible & scalable KDE implementation
currently in the scipy universe. I think we're well-poised to offer
that, but it would require an improved ball tree/kd tree
implementation.
Density estimation would be great, and it fits well in the API of the
scikit. Definitely +1, but it's a case of finding the right person that
has an itch to scratch (hint ;} ).

G
Olivier Grisel
2013-01-11 00:16:58 UTC
Permalink
Post by Lars Buitinck
Post by Andreas Mueller
I wanted to ask: should we try to make plans? We get a lot of PRs and
have more and more contributors and I think it might be nice
if we had some form of road map to give everything a bit more direction.
I know that people mostly contribute algorithms they are using in research,
and that is great, because that makes for high-quality code.
I am not sure, though, for how long the "hey look, I coded this cool
estimator which I used in my latest paper" strategy is feasible.
What we could do is determine a focus for the next release other than
* implement Python 3 support
+10
Post by Lars Buitinck
* fix outstanding API issues, like sparse matrix support for some estimators.
+1 for instance a sparse version of `MinMaxScaler` for instance :)

Also I would add:

- finish the current ongoing effort on ensemble methods like boosting
and I would add stacking / blending as this kind of meta estimators
might help us identify missing API patterns / requirements that are
structurally important for the project (for instance the boosting
implementation emphasized the importance of consistent handling of the
sample_weight fit parameter).

- finish the ongoing effort on model evaluation / selection tools
(mostly grid search related stuff and maybe a tool to help plot
learning curves for bias/variance analysis)

- shall we standardize the warm start pattern officially and leverage
it in model evaluation tools (e.g. to plot learning curves faster for
instance)?

- have some examples for online learning on realistic large scale data
(gael started with a new minibatch k-means example on patch data, and
I think the new hashing feature extraction for categorical / text data
will make it possible to showcase realistic sentiment analysis task
for instance. Being able to address streaming problem might help us
identify further API design issues (e.g. is the current API flexible
enough to efficiently implement streaming cross validation / early
stopping with a user supplied validation set)?

- maybe also finish experimenting and include at least one learning to
rank model such as a SVMRank implementation to ensure that we can
address this case with a consistent API (e.g. the query_id pattern).

I think we can consider that graphical model in general is a bit
off-scope for the project. I think the core team of regular
contributors / PR reviewers lack either expertise or motivation to
embark on such a large new field.

Structured prediction problems and recsys tasks would be interesting
but I am afraid we would require a team of dedicated volunteer to
invest some time to implement the base line / state of the art while
working out the best API design issues. We should probably not wait
for that to release 1.0.

--
Olivier
http://twitter.com/ogrisel - http://github.com/ogrisel
Rob Zinkov
2013-01-11 10:25:14 UTC
Permalink
+1 on those suggestions

My impression is the core value of sklearn is being readily useful to
practitioners of machine learning algorithms. We shouldn't be afraid to
deprecate modules that aren't being used. I think much of the core effort
will be in making the library more internally consistent, and defining how
we want the library to interact with other libraries such as scikits.image.

Just my 2 cents
Post by Andreas Mueller
Post by Andreas Mueller
I wanted to ask: should we try to make plans? We get a lot of PRs and
have more and more contributors and I think it might be nice
if we had some form of road map to give everything a bit more direction.
I know that people mostly contribute algorithms they are using in
research,
Post by Andreas Mueller
and that is great, because that makes for high-quality code.
I am not sure, though, for how long the "hey look, I coded this cool
estimator which I used in my latest paper" strategy is feasible.
What we could do is determine a focus for the next release other than
* implement Python 3 support
* fix outstanding API issues, like sparse matrix support for some estimators.
That would be a step towards a 1.0.
--
Lars Buitinck
Scientific programmer, ILPS
University of Amsterdam
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
Gael Varoquaux
2013-01-20 15:43:48 UTC
Permalink
Post by Lars Buitinck
What we could do is determine a focus for the next release other than
* implement Python 3 support
* fix outstanding API issues, like sparse matrix support for some estimators.
I agree, but I am not sure that this would work, as people are excited
about certain things but not others. Ideally this is the right scope for
a sprint (we need to organize a new one, and I need to start looking for
money).

G
1970-01-01 00:00:00 UTC
Permalink
--20cf306f7258cc2d4104d390594d
Content-Type: multipart/alternative; boundary cf306f7258cc2d3f04d390594c

--20cf306f7258cc2d3f04d390594c
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable

Hey guys.. I need some feedback from ya'll on the banner..
This is a very simple quick one, just to get a feedback base going.
Let me know regarding position, size, text, colour etc.

[image: Imágenes integradas 1]

All feedback welcome :)

Regards,
Jaques
Post by Leon Palafox
Hello, I just finished with most of the edits.
Regards
Post by Didier Vila
All, thanks for your good work. I just completed the form as an user (
and not core). Didier****
** **
Didier Vila, PhD | Risk | CapQuest Group Ltd | Fleet 27 | Rye
Close | Fleet | Hampshire | GU51 2QQ | Tel: 0871 574 7989 | Fax: 0871 574
** **
*Sent:* 17 January 2013 13:18
*Subject:* Re: [Scikit-learn-general] Roadmap / Scope****
** **
Hello,****
** **
I have some sort of form ready in google docs.****
** **
https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ
****
** **
Let me know your suggestions****
** **
Leon****
** **
On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller <
Hi all.
Leon, did you set up a Forms already?
Do we have any more ideas for questions?
I think we should start voting on them if we want to get it ready for
the release.****
Cheers,
Andy
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current**
**
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712****
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general****
****
** **
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory****
+81-3-5841-8436****
University of Tokyo
Tokyo, Japan.****
** **
------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
http://p.sf.net/sfu/learnmore_122712
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--
Leon Palafox, M.Sc
PhD Candidate
Iba Laboratory
+81-3-5841-8436
University of Tokyo
Tokyo, Japan.
------------------------------------------------------------------------------
Master HTML5, CSS3, ASP.NET, MVC, AJAX, Knockout.js, Web API and
much more. Get web development skills now with LearnDevNow -
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.
http://p.sf.net/sfu/learnmore_122812
_______________________________________________
Scikit-learn-general mailing list
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
--20cf306f7258cc2d3f04d390594c
Content-Type: text/html; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable <div dir="ltr">Hey guys.. I need some feedback from ya&#39;ll on the banner..<div>This is a very simple quick one, just to get a feedback base going.</div><div>Let me know regarding position, size, text, colour etc.</div><div> <br></div><div><img src="cid:ii_13c4de9643d8ab0d" alt="Im?genes integradas 1" width="662" height="369"><br></div><div><br></div><div>All feedback welcome :)</div><div><br></div><div>Regards,</div><div>Jaques</div></div><div class="gmail_extra"> <br><br><div class="gmail_quote">2013/1/18 Leon Palafox <span dir="ltr">&lt;<a href="mailto:***@gmail.com" target="_blank">***@gmail.com</a>&gt;</span><br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"> <div dir="ltr">Hello, I just finished with most of the edits.<div><br></div><div>Regards</div></div><div class="HOEnZb"><div class="h5"><div class="gmail_extra"><br><br><div class="gmail_quote">On Fri, Jan 18, 2013 at 7:30 AM, Didier Vila <span dir="ltr">&lt;<a href="mailto:***@capquestco.com" target="_blank">***@capquestco.com</a>&gt;</span> wrote:<br> <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div lang="EN-GB" link="blue" vlink="purple"><div><p class="MsoNormal"><span style="font-size:11.0pt;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;color:#1f497d">All, thanks for your good work. I just completed the form�� as an user ( and not core). Didier<u></u><u></u></span></p> <p class="MsoNormal"><span style="font-size:11.0pt;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;color:#1f497d"><u></u>�<u></u></span></p><p class="MsoNormal"><span lang="EN-US" style="font-size:10.0pt;font-family:&quot;Arial&quot;,&quot;sans-serif&quot;;color:gray">Didier Vila, PhD | Risk | CapQuest Group Ltd |�Fleet 27�|�Rye Close�|�Fleet | Hampshire | GU51 2QQ | Tel: 0871 574 7989 | Fax: 0871 574 2992�| Email: <a href="mailto:***@capquestco.com" target="_blank"><span style="color:gray">***@capquestco.com</span></a> <u></u><u></u></span></p> <p class="MsoNormal"><span style="font-size:11.0pt;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;color:#1f497d"><u></u>�<u></u></span></p><div style="border:none;border-top:solid #b5c4df 1.0pt;padding:3.0pt 0cm 0cm 0cm"> <p class="MsoNormal"><b><span lang="EN-US" style="font-size:10.0pt;font-family:&quot;Tahoma&quot;,&quot;sans-serif&quot;">From:</span></b><span lang="EN-US" style="font-size:10.0pt;font-family:&quot;Tahoma&quot;,&quot;sans-serif&quot;"> Leon Palafox [mailto:<a href="mailto:***@gmail.com" target="_blank">***@gmail.com</a>] <br> <b>Sent:</b> 17 January 2013 13:18<br><b>To:</b> <a href="mailto:scikit-learn-***@lists.sourceforge.net" target="_blank">scikit-learn-***@lists.sourceforge.net</a><br><b>Subject:</b> Re: [Scikit-learn-general] Roadmap / Scope<u></u><u></u></span></p> </div><div><div><p class="MsoNormal"><u></u>�<u></u></p><div><p class="MsoNormal">Hello,<u></u><u></u></p><div><p class="MsoNormal"><u></u>�<u></u></p></div><div><p class="MsoNormal">I have some sort of form ready in google docs.<u></u><u></u></p> </div><div><p class="MsoNormal"><u></u>�<u></u></p></div><div><p class="MsoNormal"><a href="https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ" target="_blank">https://docs.google.com/spreadsheet/viewform?formkey=dFdyeGNhMzlCRWZUdldpMEZlZ1B1YkE6MQ</a><u></u><u></u></p> </div><div><p class="MsoNormal"><u></u>�<u></u></p></div><div><p class="MsoNormal">Let me know your suggestions<u></u><u></u></p></div><div><p class="MsoNormal"><u></u>�<u></u></p></div><div><p class="MsoNormal">Leon<u></u><u></u></p> </div></div><div><p class="MsoNormal" style="margin-bottom:12.0pt"><u></u> <u></u></p><div><p class="MsoNormal">On Thu, Jan 17, 2013 at 10:13 PM, Andreas Mueller &lt;<a href="mailto:***@ais.uni-bonn.de" target="_blank">***@ais.uni-bonn.de</a>&gt; wrote:<u></u><u></u></p>


<p class="MsoNormal">Hi all.<br>Leon, did you set up a Forms already?<br><br>Do we have any more ideas for questions?<br>I think we should start voting on them if we want to get it ready for<br>the release.<u></u><u></u></p>


<div><p class="MsoNormal"><br>Cheers,<br>Andy<br><br>------------------------------------------------------------------------------<br>Master Visual Studio, SharePoint, SQL, <a href="http://ASP.NET" target="_blank">ASP.NET</a>, C# 2012, HTML5, CSS,<br>


MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current<u></u><u></u></p></div><p class="MsoNormal">with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft<br>MVPs and experts. ON SALE this month only -- learn more at:<br>


<a href="http://p.sf.net/sfu/learnmore_122712" target="_blank">http://p.sf.net/sfu/learnmore_122712</a><u></u><u></u></p><div><div><p class="MsoNormal">_______________________________________________<br>Scikit-learn-general mailing list<br>


<a href="mailto:Scikit-learn-***@lists.sourceforge.net" target="_blank">Scikit-learn-***@lists.sourceforge.net</a><br><a href="https://lists.sourceforge.net/lists/listinfo/scikit-learn-general" target="_blank">https://lists.sourceforge.net/lists/listinfo/scikit-learn-general</a><u></u><u></u></p>


</div></div></div><p class="MsoNormal"><br><br clear="all"><u></u><u></u></p><div><p class="MsoNormal"><u></u> <u></u></p></div><p class="MsoNormal">-- <br>Leon Palafox, M.Sc<br>PhD Candidate<br>Iba Laboratory<u></u><u></u></p>


<div><p class="MsoNormal"><a href="tel:%2B81-3-5841-8436" value="+81358418436" target="_blank">+81-3-5841-8436</a><u></u><u></u></p><div><p class="MsoNormal">University of Tokyo<br>Tokyo, Japan.<u></u><u></u></p></div></div>


<p class="MsoNormal"><u></u> <u></u></p></div></div></div></div></div><br>------------------------------------------------------------------------------<br>
Master Visual Studio, SharePoint, SQL, <a href="http://ASP.NET" target="_blank">ASP.NET</a>, C# 2012, HTML5, CSS,<br>
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current<br>
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft<br>
MVPs and experts. ON SALE this month only -- learn more at:<br>
<a href="http://p.sf.net/sfu/learnmore_122712" target="_blank">http://p.sf.net/sfu/learnmore_122712</a><br>_______________________________________________<br>
Scikit-learn-general mailing list<br>
<a href="mailto:Scikit-learn-***@lists.sourceforge.net" target="_blank">Scikit-learn-***@lists.sourceforge.net</a><br>
<a href="https://lists.sourceforge.net/lists/listinfo/scikit-learn-general" target="_blank">https://lists.sourceforge.net/lists/listinfo/scikit-learn-general</a><br>
<br></blockquote></div><br><br clear="all"><div><br></div>-- <br>Leon Palafox, M.Sc<br style="text-indent:0px!important">PhD Candidate<br style="text-indent:0px!important">Iba Laboratory<div><a href="tel:%2B81-3-5841-8436" value="+81358418436" target="_blank">+81-3-5841-8436</a><div>
University of Tokyo<br style="text-indent:0px!important">

Tokyo, Japan.</div></div><br><div style="display:inline"></div>
</div>
</div></div><br>------------------------------------------------------------------------------<br>
Master HTML5, CSS3, <a href="http://ASP.NET" target="_blank">ASP.NET</a>, MVC, AJAX, Knockout.js, Web API and<br>
much more. Get web development skills now with LearnDevNow -<br>
350+ hours of step-by-step video tutorials by Microsoft MVPs and experts.<br>
SALE $99.99 this month only -- learn more at:<br>
<a href="http://p.sf.net/sfu/learnmore_122812" target="_blank">http://p.sf.net/sfu/learnmore_122812</a><br>_______________________________________________<br>
Scikit-learn-general mailing list<br>
<a href="mailto:Scikit-learn-***@lists.sourceforge.net">Scikit-learn-***@lists.sourceforge.net</a><br>
<a href="https://lists.sourceforge.net/lists/listinfo/scikit-learn-general" target="_blank">https://lists.sourceforge.net/lists/listinfo/scikit-learn-general</a><br>
<br></blockquote></div><br></div>

--20cf306f7258cc2d3f04d390594c--
--20cf306f7258cc2d4104d390594d
Content-Type: image/png; name="Screenshot at 2013-01-18 14:43:09.png"
Content-Transfer-Encoding: base64
Content-ID: <ii_13c4de9643d8ab0d>
X-Attachment-Id: ii_13c4de9643d8ab0d

iVBORw0KGgoAAAANSUhEUgAABEsAAAJmCAYAAACkOg6pAAAAAXNSR0IArs4c6QAAAAZiS0dEAP8A
/wD/oL2nkwAAAAlwSFlzAAALEwAACxMBAJqcGAAAAAd0SU1FB90BEg0sCJo2YzoAAAAZdEVYdENv
bW1lbnQAQ3JlYXRlZCB3aXRoIEdJTVBXgQ4XAAAgAElEQVR42uyde1xU1fr/3xuGGUQGVITEREgF
L0CWaIaZYd4q8VRaeeR0Uut7zE6afbtYamV2s/xqx1LT9JTar4PHSo8dtbzmJUU9inoCK9EURUFB
1GEQmQFm//7Yw2VggBlAxXzerxcie/Zee61nPWvNXp/9rLWUf/54VB3QpQVeOg/c4XLBJXZs30r/
QQ/g59+s2vMKCwvZvXs3Bw8e5OLFi2XHmzVrxm233cadd96Jt7c31xTrET5JeJJ1PT/hq5ej8a7r
8caKs/zaLnHq8BHS93/JOwsOEzdnOa/e5lO39AtTmfHoMxwc9iVLR4XidbXrSWjctqvu3sV5ZBzP
osDm5BpFh3+bW2jl43Hj2k3agSAIgiAIgiBcM3QP3Nryit7A29ubuLg44uLiGu848vg6Np1twT33
hzsMPNw9fl2Vz3qULyeNZ+2lVvQY+QZjbvW5PsshNHrbVXdv24XtvPXkB/zqvOegz4ff8m4PH/E5
aQeCIAiCIAiCcNVR8kwX1bpc6GpkiSAIgiAIgiAIgiAIwvVEvWLcPTw8KCmxiRUFQRAEQRAEQRAE
QfjdUGexRFE88DUauXghV6woCIIgCIIgCIIgCMLvhjqLJTqdjpC2Yfz68yHOnsnCZpMIE0EQBEEQ
BEEQBEEQrn/qvGaJqqqoqsrFC7kcOXyY/HyzCCaCIAiCIAiCIAiCIFz31FksKcXT0xMPDw9QFLGm
IAiCIAiCIAiCIAjXPbr6JlBSUkJJSYlYUhAEQRAEQRAEQRCE3wUeYgJBEARBEARBEARBEIRyRCwR
BEEQBEEQBEEQBEGogC4lJUWsIAiCIAiCIAiCIAiCYEdn8g8UKwiCIAiCIAiCIAiCINjR6fV6sYIg
CIIgCIIgCIIgCIIdnd5LxBJBEARBEARBEARBEIRSdDqdTqwgCIIgCIIgCIIgCIJgR+fp6SlWEARB
EARBEARBEARBsKPzUGT3YEEQBEEQBEEQBEEQhFJ0iqKIFQRBEARBEARBEARBEOyIWCIIgiAIgiAI
giAIglABmYMjCLViYs4DHYlp1ZyYVrey/ojJ+WmFZ/nm9aeYunRvzccaEifpT+oRSkyr5kz9Pu2a
WGtmv1C7rRx/4nvHs3jVXiwVzh0Z2ooXF+64LrxgTEQrxs2pf14ba5kPfz+fSRM+x9wIbHQ9Udlu
V9IGx39IZNKIAQyMaEVMq1YM6zeA995JJLOwsF71VFueK3/uiq9M6hFK/ND5Du29sTMyohXjFt44
/luXvuhq+nt979tY+iN383Ej9qNXm4zDv/LVV2t45/25jH1lFhPfT+Sr3UcpKHI874Mps5m/I6Ps
7w+nzubjLRku3+dKny8IwpVHtsIRhFowH9nE+v3ZpV+xrF63l0Hh/asKKgl9WJKUTexbo2s41pBc
6fTrjj6wOwljHiDA4A2AJfskW79dzNyxQ8hiI5MfihbHalQUkrRoNsmFY+uVSkSv3hhC/MVuV0Io
+X4ao0bPhpDuDBr+DMFBkJ68g9Vzn2VrUgpLVk6ntfeVqSfH869emYXG7+9Xp83XzecaS3904/WL
jduHd638lqV7TuEXHEb3nncQ6wXHD//KD//6lrTDcYwfGUN1tdWmXQhezQ1iRkEQsUQQhFJS1i0j
q+LfXyzj+F/6c0ulgYnFScCJxXRl8+Ys/RdX/siYwkJahkRcM5sZQ3ozavz/YqxwLGF8ApP7x7N+
5nwmP/SJONbvkJeWfCNGuCKYWDMnEToMZcmmedziXd75PLL8r4yZsJjEpNG8dG/EFaknqVfhevSN
xpI3aT+Nh4yDP/KPPafoEvcgz9zfAa/SD3p3I3bLGuas+5E1B0P4021BTq9/bOQwMaIg3GDINBxB
qInCk6z+QpviEjvuecIMkJ+xlq37TzqcNrPfHSw7pEWf7HpjCLERA5gS16PKscOmQsDEljl/ZVh0
qD2UPp5vfnCcMvNij1BiWnVk8fdrmTlqAPeENic24lYmvbOiLAzZ2T0PmwqZNfRuHrm7JzO3lKd5
/IdEpo6KZ2BEc2IjOjJyxAvsyzC5fU+A9RPvJjb0DpKy3Qv9N/iHExt5E9bsIzUZnKSlkxjRo2PZ
1J3ESraxmNJYPPFPDLNPN4oJDWXchL9x3FSen8ykRMb1u5WYVlp5x4yqXN7a7+MMa3Yaiyc8wsDQ
5sRG38qLE+eTWUi90h0T0YoXF37O1KF3E2u/ZubCtTVOcagaPl9I4oiODHxgmhs2KGfOA12Zm5RN
7v63iGvVUZtqVmhi/ZwX7H7anIG9B1SZRuWsLI7TO0KZtHRFmT/dE30HU+es5VzGXt4bMYB7WjUn
NvoO5qxKccseIyNCmbRwPuN6dyQ2tCMzv0+pNb/fjLqDe3o85VhfhWd5r3cow0Z9Xqf6c2q3K+En
hYWY8woxBEXR0ttRpY2473nG/GU00f4VjheaWD9nEiPt9T+wxwASv0+ptp4c73WWxaPuIDb0Vr5J
Plnl/OrKXMcOtkHauzN/GBPRiklLVzBnVLxWDxEdefH1zzlXS7dlzUgp99cedzNz6aYyH1o/8W5i
I+JJMRU6CFlzHuhI/Ij51RSx5rpwpZ1dqXbkbn04q3tnU7pqtXvhSb5556+M6BFKbGhHxk2czzev
x3NP7782aDurnDd3+kQAS+FJvnld+64uLcc3Ewc49LOu9MVV2lttPlFLe6xMbeVyJY+V29DT93et
d39Zp/ZyJSm6xPath/EK7Mif+lcQSgDQEdG7D4NiOtGqhiSqTJMpKmTvli18MHtR2XSezYeyq73/
uqWfM27KIrafrN7vis3nWffVCiZOmcW4txcxf2UyuQ7Tg4o5tHsL77w/n7GvzGLKzOVsPnzeIY0P
ps7l7zuS+XjmfMZNmc9Xh7Jduk4QBBFLBMEtMg+tICkjD70hilEjRxMfEwRYWLNwk8PDbEBIhbcQ
BgMBIW0JaFv1mN5QyPqJj/DSu8tIz8kDg4X0QzuZntCHmVXWGMlm7ujHWX2okI6RIVjzMtgw93+Y
uTyl2nvqnUSHpix/gYSEZ1mzbie5eWDNyyZ1y2LG976b1aln3bonQOvI3vTq25sAtyNRTaRlnEUf
FF7tGVveeZzxryzAGtKPSQv+zqBIC7MSBjCn7AHMROLYR1i46ghxL33InMSvefGJ3qQsf4vp9odR
S/YOJo16gdyQwcxM/Jr33n4eS3Iik5+eXTZQqP0+zkle9CIrMvwZM2MeY+6PIOmLyby3aJMb+XfO
1jdeJCtkKAv37mH88LZseONxJs3ZVGe/dcUGFRn16TcMi/QjIHI0S37cSFy4gfVvPMLkd1cQMfxV
Zi7+O0MiYe7Ygby51J259BY2vPIsWSEjmLtpO+Pv92fNu48zrN/jmDuMYO6m1STEQOKEv5KUbXLD
HhY2vDENa8xQxvxlLHFRN9Wa35gn+kHGDpKOlvv8uaOb2XrUQuwTvetUf1Xt5n9l/MT7JuKG9yA3
6S1enDCNpOS0sv7H4B/B6LenMyimbdkAZvUr8Ux+N5GWvZ7hvcXziO1gYtboeBYnnay1ja5+5XHm
rjMxftk3PFKWZu1lrgsN0d6d+4OW7w2vPEuKfw/eXLmd914azL5FL/Lmoh21tPHJrD5kYNRb79Er
0MSyVx5lsn2gGTM8AX3ePtZXsKP5yA62HjLR64l+TsWHmuui0MV2dqXakXv14Wrd12x3rU6nz12J
sVsCL04ZSu6qaUxftLPafNW1ndWnTwQTK8Y+wvRFawm7/3nenJJA5qrJTP9iX33fwLjRPmtvj+6X
q4a+ukIbGjKqf737S/fby5WlwJxNWpaFVhGdCPCq+rmXVwsefuw++lUTVeJE1mDXv77is3WH8GvX
jaeeGERkYCFff/EV634zVan3Xf/6llU/W3j4yWH0aVt9v5m2cxM/XjAQ//Ag4iNbcGjPVv6x43jZ
5we//5Y5/9pPUfNbSBgxmO6tS/j680T+5SB8FLNv9Y8Ut+1EfO8Ybgv2c/E6QRAqI9NwBKGGh5rk
L1aSD4T1HU10SFuMTwxmbtJiMrcsJiU7ge5B2tvc0UvWkGuP9Iid8g1zx/QGTNgqHTt3ZAVzvtgH
+DFq8RrG3B9OytIXGP/KMla/O5uEvp84rDsQ3Ot5lqycSktMzBl6B0uSskn9PgWGR1dzz0qPP6a9
zHk9ESsQdt9Y3nz7VQJMe5kz4Sk2HMpgzsTZxK6cTksX7wkQPXI6s0bW8thlOUtmxsmyaTjm7JNs
+OJ9VhzKI3bKUKfXmDM2sXDRDqKe+DsLZwzDAPBQfwIsA/j0jdkM6/UJAZaTpFtuYsjb7zF+eA8A
et3bg9zkO1idtBMz/TFnpJBu8efp8c/TN+YmoD8dO/izIgkshUBO7fepbu0H3w4jWJho/3z4YHKT
72Br0hEY39+l/FeXbnCv55n1kTZtKXr8J+izjzB5zmwOP9Gbjv7ebntubi02MFZK0hgSTrC/NxSG
EBbeFvORROZ8sY+4t1Yz3e5Xfe8fTDB9mPXu+6Q89I1jJEMNBHR7hjfffhIjEDb+eZZ88TjGvlN5
8+0EDEDw+NGsXvc+h4+a6BXk77I9Aro9w6yPpmIEzh1J5M1a8hsRk0DHwMVsWL6PR6IGaw+lWxIx
B3ZnSEzbOtVfZbsZrqCf9Br/GW+aXmDm3NmMXz4bMBDRqzcDHxzNkOGDy9qwOWMzS5anEjPuS2a9
ppUzrlc01qF/IvWHFOjVtlqhZP07T/He8pOMWryahF7Op/RUV2Z3aaj2bqzgZ6X+ALAQCOhV4VjM
VFJXrWX195thfO9q8+XbYQTLNtnrYGQC0aMG8Omc2Rwe3p2OkYOJ6/A+u5ZvxnJ/BAbg8JbFZBq6
86YTu9ZWF+cCTS63syvVjtypj9Yu1n1Ndj+XupYl644w8IMNTB+p1emQ4UMZ33sIh6tJry7trL59
4rkjVfMZd38/xvR+xGFarvt+72r7dK09uluu2vrq0nqzmFL4d+A/6tdfutlerjRFhXlcBkJa+zWM
+HI+nXXJOUTYp/QA3NYuiKJPv+V4Wg609y8TovZ+v5Z/JJsY9MRw+rVvUWO6TQIjeeHJ+zRBp3sH
8k4u5r/HzkPfWyg4f5w1OzK4pedgXhjaSYuOuS0Mv6JE1qz+D33a3VcmBPmFdGPsY33wAQrOH+dD
F68TBMERiSwRhOoG/KYUVn9/BDAQ+0RvDEBY3xHE+BmwWlJZsSXF/UHsoc1kAb6BPYjt4I8520RA
zGBaGwzkH93B4RzHtxFh9/WjJQD+RHTQHi7MeSY37vcdKXkW9IZwXpwxlegQf1pH9Wf8jOfxBcyH
NpOeV9ig9wTIP7SMhB5dGWL/SRg8hCXLdxJx3/NM/kt/5w+RRzaTbjEQ91CPCg/h/sQ81B1rxj7S
c0wY/KOZtnIjk4f3wJx9kpSktXyz8H2SMkxgKcRSCAEdutPRz8ScoQN4ceI01v+wF2NMAuPHJ9DS
27X7VEfrmH4ElD18GugY4l82rag+6Xa8r5/D+i5hfbtD3hFSMuo2xaE2G9T6QH90H7mGEAb2rbgQ
rze9hveDvCMcdiNfAeFR6O3/1xv8MRgMtO4VXmYjg18QeizkFrpnj+CoqHIxzoX8GvzDGXJvOIfX
rdRCywtPsn55CmH3JhDm712v+rs6fuLPkNc+Y1t6OksS/86oJwZDxl7mvvI4w+5+pCzs/tyRHWTi
R9z93cuuNPhHM33zT2WDM2ekfDGJyXM30/q+Vxhzv+vrHWUmrWDOO9OY+fokZr4+icSlrkVENVR7
d+YPZcciu1c4ZiA4yFDrQlLRwxMqiFX+xA7vjTUnjfRsC3i3ZcjwHmQmJZKSXVg2TTPs/gQinIiH
tdWFO+3sSrUjd+rDVWqye9ahzZgNIQyssL6OwT+aIXUYPNfUzurbJ+Ye2kwuIcRVECkMQd0ZFBNU
r+cKV9unq+2xvn29Q71VaEMN0l+62V6ummhSXNwg6eTlZJCLga6RwWXHvJoE8T/P/6VMPAE4vmcL
n21NJ6BLL+IjW9T+ndk2DL8y4UJHSHMDRWYt+uNyTjpninV07RpcYRqRNxFdW1N0IZMz5vIOIKB1
ED72/7tznSAIjkhkiSBUQ/qWZSTnacHuyxJ6sqzS58kLl3HuwR5uPZCYM7S5rPk5m3n67q6VPjWR
ayqECqvmBwSV/798io3rX2oW01msgN4vyGHajDEoAiOQZTGRnm0qi5BpiHsC+Ib046Upo/E1lD54
BRHWIZrWQdUby5yTjZU85g7tytwqn/qRnl1IrxB/Ulb9jTcnfkB6ngUwEBbZ3T6IsNjv1YNZ333D
nNensf6L2Wz9YjYYghj21jxeHNnf5fs4fzD1d3ybagCLfcRWn3R9gxyPG/zboqeQrDw3Nl61VLy+
ZhvUFg2Qm3ES8CcgyPFMfVA4RkzawNFl4ca/yv303jU3GlfsYQy5yc38ehMzfCisWkDS0bPEsYNd
GTBihiaE1qf+rpafaM+3/kTfO4zoe4cxHjj+w3zGJ0xm+jsrWPHpk1jzsrHiT4Cfe4OR/IxsIiJD
SFv3AatTB/NI1E2u9ZM/LGbJ3PIpFL4dTCSM7F97X9hA7d2ZP5T3c5XtWLtNAkIq+14Iekzk5hUC
/nR8aDStZz7F6qQjhHXYq/nQR72dtqna6sKddnal2pF79eFaHFFNdjdnmwB/WvoZHD73DfKHQ+6K
wtW3s8q42ydaTYXoDd4Y/R3zGRDiDybX+2J3fcLd9ljnvt5JHh3bUMP0l+60l8qMCG1FmqVum4/r
DVHsOvGjwzEvox9NdJ7kZRdUe53pvAkvoz8+LkRZFF2+RDEG/Lw9azzv8oVLtAn249TPSezK7ECf
1k1rPN8v0OC4nooXFBWXAFBgvkQxFlYt/DurqnoDZ/JLKNVjmjQvv4871wmCIGKJILiAiaQv1tY8
oDy0lq1HX6n6EGOp/sGk9CFSH3gXL854hoCKX1cGA2GVH9QNBscnQTcfzgz+N2kDi7xsci0VRZs0
zGhvKMOC6njPGjAERhP30OAqb3prfLgJDEJPEAkL5jGww01OHoxv4lxqIpPGvoXxwedZ8tJYosNv
Qlsw7g5WWyo+9PVm8pKNTKaQw0mbSZw5jRWvPEVw+I/EuXCfGkaq9cp/tb6U7fj0bck+ghVvgv2q
sb8BHJ8hTWSaCh2qqyYbjK7lLa4xKAgsaeRmW8C/4kDnCGYMBLi1TEUdphG5Yg+D+/kN6DaY7kGz
2bBqHwEkYvHrTVy3oHrX35X2k8zk+YwYPI24BRuZVmnb7VvuTWBQt9l8cyjVbou2+LKDXIs2uC/l
XOpesriJ6CjndR/1xDzmTongzf7xLJzwAXFrP3RJCO712hqSX6vDYKYB23s9uqqqg1ST42DbUpiB
1eBPsF3oNYb0Ji7Gn/XLN5EcuRlLUH8GRbatph3VXBfutbMr1I7c8sv6v33WxKg0zuVVLHMh+dl1
iaJzzybu9Im+IW3Bso9ckwmCyvNprpxPF/pid3yitH260x5rLZereaz0d0P0l+60l8rM2rQRs6WO
jmao+iXlYwwiMlDHrrSj5BZ1qDLtpKjoPInzEjne/FZmjOtT6y18jH40IYM8u5BRZt3MTHJpSrvW
Wh5u6Xkf4+9vwdKPvmLNV0l0fXYA/l51G5p5GZuiw4d+I+6je1BTJ0JLUweRpU7XCYLggEzDEQQn
mDN2sCYpGzAwInEPSelZZT9bf9pOXIgfkM3qCou9lWoM5mwTlsJCp8cCIvsRAFhzjoB/NH3vH0yY
IY2FM99nxbcpbj/wO7un4wPLA0T4GbBajjBr4jRSMkxkpm5izuuzyQeMkf0IC/JuFDZvGd6b1gYT
6dnedIyKLvvJTVrMnJmLybUU2qcxBZFQNnACS3YaKUfLH2APfz+J+OgB9oUOvenYazDjP3ieAPJI
zy506T5XKv/VkbZqLecqPMjuWr4JfWA0MR2cqxJGA+SmnizTyMwZKaRkWFy2QTX6C5Cn+U1kbwLI
YIPDVLNCkpdvBr8IuocEXVFfcNcerubX4B1B/H0RHP52MSu+TSHs/qFl2/DWtf4q2u1K+YkWag+7
5sx32AVG8/8UUo6aaNkh3D44uYuWBhNbV1XcceUsC8c+wpsz19YwkLwJo380495KwHxoMbOW762+
33GzzFeyvTc06Vv2VdCeC0n9di/6oGjCAkt9z5+BT/QjN2kBC5fvo+ODI6pdi6i2urjS7cydduSq
X9a37gMi+xFgyWZDhcWMLaYjDouAXgmfc7dPLLXH+nUpDvncmpztVl/srk+42x5dKZe7eSyzeYP0
l663l8q0Do92SNutn3BngkxTYuM6UpRziK92HMVhgxmKObRpC//NtxDZu5NL+WvSPAQ/nYX//reC
TxRdYk3iSpZuPFrhvKb4NAni4SGRFGT9xNfJmXX2Y7/AEAJ0Fs7k6whpHVT2k3fsv/xr43/Jq2aK
UV2vEwRBIksEwfkDyKrFpAN6+2JmhgrhzgbvaOL7RrD1i32kfb+Yw1P60dHfHhWyP5vURY8T90UU
c/audnLsG8Y8GMX0b1OZPrQrswL9sOZoD4D6qGcI8HZHuHB2z42OZwT1YPyUwYx/ZSXp6xYwat2C
ss/0hnBe/Oh5+/okrrNv6SSWbLEw/qP36rT4aPUPkf0YMzyayW88wpikBIY8dBfnkr9jyaKVtH5w
Fq39vTF36I4vK0mcuYDgMQ9gPrqPNQtnk5xnwddiwgq0juqH0bKYN0f8lfEvjSaAbFbPmYbZL4pB
MTdhDGlb632uVP6rI3f/AhL6HWHUE/1IWT6fDfsziP/gs7IH08rExbRl+reTeDPIRK8OhaxetIB0
i6VMa6vNBs7zH4R51Vo+XRjOsOEP8PTwKN58409Myn6VgTFtSV03nyXfHiF2ytdEXGGBzV17tAwf
ytPD57uU3+jhIzAsepFd+PHi8N71rj9Huw29In5i8O/B+LcTGDNhMQk9dhDTqwdhHdpizkgjectm
ci1tmfzSUHv6vRnzRDST5z7FJF4lLspA0vIFrDnqzYsfDa41f7fc/ypj+q5l4buTSbr/m7LFQmsq
8y3V2MacsZbEOYUYDJW2O74/ge4N1N4bXCxZN403FwYx5v4Ids2ZxqfLjzBowSfcUqEIYb1GE2FY
SWqOP6OGR9dQ1zXXRcvwIJf99kq3I9f8stBtf3fWVkc9OJvprwwhN+kZBsbA6kXzSc2x4OtfU7up
333d7RONIf0Y90R3Xnr3UUYmj2ZIX39Wz9XyGRDiel/srk+42x5dKZe7eaxIQ/SXNbWXfUsnsWSd
ifELPmzQ54nqCLntbh7+OYuv133LxD2B3NYljDZGSDt0mP9m5NGmaxyPurgbjk+LEOJ7BvHZ1rX8
nVi6Buv4OTmZXTmePPpYhyrnt4qMJT7iKGu+38qhyKFEGt0vr0+LMOJjgvhs9Qo+/C2S2K4hmE4e
Zf3OwwR07U9AE129rkvbvYV1hyw8nNCfkCa6Kn8LgoglgiAAsNr+Fqd1L20xs6oPEEPx/WIf+Tk7
WJ10ko73RxD70lRiDr1A8tFsAjq0BbydHPPnkU/XYIyaxJIvNpOWkY3eL4SBT7zK+JcS3AwscZZ+
VbqP/IwlIf1YsiiR5KSd5BJEVK/BjJ8xle4h7m/7mXtoB8lbLA7TehoGbwbNWI2+w2QWLlrLm+sW
o/cLIW7cPF58KQEjYIwZzfQPTjJr5nye/nY2AR26M2T8Z3zKYsZPTCE9x0SvkP7MWjaPWa9/wHuj
H8Vq8CMipj9vLptathZEbfe5Uvmvjqgn3qBjxnd8+sY0Wkb2ZtyCz0h4qEe15w/56DPSJ7zA6i8m
k+QXzqDxHzIkYzZzkksfZGu3QeW8xzzxDGHfv8CyNyYRENOb0R+tQd9hEgsXvs+GuRbCuvVm3Eer
SRjeu6FmPDSYPcCbIS7mt2WH/sR28GOrpT9xkTfVs/6q2u1K+Un08A9JDOnOwpnzSdqykl3rwDck
nO73j2bEuOfpHn5Tefpvf4M+ZBpz57zPhrl5BHS4i0mJXzrderQq/gx5ayor7v4fZr2+gl6fPllr
mW+pJt38jJ3MfbfqlrDDQvrRPSSiQdp76xD/BvW92ClTYd0HJLxxBGNIFKMWrGZ0palPhqAI4qL8
yTINJTak5ml7tdXFkCvYztxrR674ZV38vep9HvloNfi/wJJV85m+zp/Y4a8w4ugCNpj8q72mvvet
S5/Y9+1/MDNoEnMXJjJ9iz9xw6cyInU2G9zoi+viE+60R1fK5X4eG7a/rKm95B7aQXKShVyLtq7U
lcebfgmP0SriP6zfepi9O/eyC08CAoMY9Gh/BnW/pWxRVFeGUD3+MBSvFj/yry272JdvwS+wDQlP
PlTN1sDexA65mx9nreWr1YeZltC1TsO2HkMfwytoC2t2HGXpzz+h8/bjtrhBPNo/qoa8u3adKTOD
tGPF9kgTXZW/BeFGRNmXdV4VMwiCIFwbnu4YjH7c18wZ31uMIfYQrgMs2Xt5+u5HCXtrNW/WEFki
7ciJ7UxpbN1yhI59+1V4EXGW9/r3JLnDe6xYkNCIa76QxBG3sTRvBOvXTpWG8DtqL4IgCNWhU1XR
SgRBEK4Vqv1f6YvFHkJjH/SlsHLRv9i1dRlphu68OqhDo/XTxtqO1EITy175H7I6PMCz40YQYChk
11cfsfIQPDvtrkbe7svzJv3T76u9CIIgVIfOptrECoIgCNfyEVxVkb5Y7CE0bmzqRdZ/tYAThij+
97P/I9xP36j9tDG2I6/Abrz95Rz+9uYM3n/yX1iB4C69eOXLdQyNbdPI270NFVCR/un32F4EQRCc
oSSdPCMyryAIgiAIgiAIgiAIgh1dsWwXJQiCIAiCIAiCIAiCUIbOWmQVKwiCIAiCIAiCIAiCINjR
Wa0ilgiCIAiCIAiCIAiCIJSis1gtYgVBEARBEARBEARBEAQ7usuWQrGCIAiCIAiCIAiCIAiCHZ3F
IpElgiAIgiAIgiAIgiAIpeisVoczpTQAACAASURBVIksEQRBEARBEARBEARBKEVnLZKtgwVBEARB
EARBEARBEErRFRcXiRUEQRAEQRAEQRAEQRDs6EpsJWIFQRAEQRAEQRAEQRAEOzpVVcUKgiAIgiAI
giAIgiAIdnQ/2/wbdQY/f6Sf1JKbqEUFWBYPQEGEsLoZUMVr2FI8WkaILQRBEARBEARBEK4ST36z
udHkRWfFQ2rkd4bt1F4RSuqBqiiQfwZELBEEQRAEQRAEQbhqNCZ9QlcsYsnvjqKtb4OqoiiKGKMO
KICt0CQtQxAEQRAEQRAE4SrSmPQJXZEMCX9X2HKPoFgvgQgl9cOaLzYQBEEQBEEQBEG4ijQmfUJn
QwbVvydsx7eJUNIghpRdogRBEARBEARBEK7qMKwR6RM6VcQSl8mzFJNzqYi0cwUcyingcG4BlmKV
S0UlNPXyJLCpjpv9DMQEG7nZz0BLHy+aeeuuah5Ljq6TihIEQRAEQRAEQRCuO9TGJZYINVaWqpJy
toDXfjhGprkIRVFRVcVp8MYv57Tfy1JyUFUVBQWDDp68vTV/7hqEzkO5ouuI2ArOgSmT61b/UjwA
BdVWrP3pqQdbkdM6UTy9wFaCqtock2go++r04vyCIAiCIAiCIAhXc/zdiPLigaLQqH+uIZ/uzSRu
yUGe+vYwmfmaUAKKS9lSFAUUKCxWmb/vNL0/O8DgxFTWpuVesfzaDq+5rvfA8bxtJF7DloBqg+JC
DP+zDbyaOiloMfrhy/Hs/CCoNpSmLdF1GoKieDRcC9UZpKcSBEEQBEEQBEG4mjQiLUIntVGV1OxL
vLLhGNkFRaiq3VZazdWhrrVrbED2JStTt57g492nGR4VxJPdWjVovm0Zu6/r5UpKDq/BduJHe4RJ
DXjoKNrwKuqlc6B4oPi3xfPuiZSkfQdq/eUiVQHF0EwagiAIgiAIgiAIwg2KiCWV+Hx/Fp/szbSL
DkqDig+KXWw5X1jMJ/tOs/RgFtMHtKNXiH+DpG/LO33tZ+CoKqqtGI/WMSi+gajFVjCfRj1/zP6x
DcW7GUpQJIqXD+qlHGxnU1HUEhS9DzRp7jxZWwkeN3cHnTfqiR9RfALAeglKfPEIuRNUGx4dBgIK
tlP/gcu59agnUHxaSmMQBEEQBEEQBEG4QRGxpAITNx5jy7ELV3RdkfIBucKlYpXnvjtKzzZGZg3q
gLeuntNILuVesfVKVFV1zS6Kgn7YUpTmYdhOJ6Pom6K06op1cX/U4st4tOyIfthSbKZTcPEESqtb
KVo/EVvWQTzD+uBxS1+sGbur3Nuz8x/wumcKln88qDlu7ASKf0pETf8RxT9EizAJ6ACKJ5xNgcv1
Ki2KsZU0CEEQBEEQBEEQhBsUEUvsvPD9UbZnmK6KUFKmK9jFhT2n8rn78wPMj4+ge2tjndIqSd9+
RaNK9DoPTJeL8dF71iycKB4ogZ0oWvYINnOW/ZCntraIhxf6YUspWvcSJSd2oEXuKNSk8KglFnR3
Pocu6lEsiwegWvMdVv1RC3IpSfkKjzY9KdnzCaqtBEqsKPVYc0RVFS1y5TpCzUqG/QshNw2lKF8a
tCAIgiC48v3p5QsBEdBtDEpwjBhEEARBKMNDTADLU7M1oUS9NpNYFEUboD+zJo0ZOzPqlIbt5E7U
Bl7e1aD3IOOChacWHyXkpX20GP8f3v/+NF6eNdhJtUFhHrr7ZuIZORTF2x+1SAvzUII6o5YUYTu5
C0XxqCC4VC++6Ad+gEfbWCyL+6Fa852fp1S0pQIe9dMAFb+br68Hvf2LUL4bi3JmvwglgiAIguDO
d35Rvvb9+d1Y1P2LxCCCIAhCGTd8ZEn6xUJm7sywR3lcwy9rRdtT+utDOZgLi3m73y1uXW872TCL
u6qqSr7Fxv/blc0XSTkcPHmpQh4V3vw2g9fj21Ddpk6qqmL5f4PRRf8Rz9C78er9MrbM/RR997/g
6a1tBaypQ65lyKsJWC+hFl9GcVEEUTw862UDj5Ae143/qlnJKAcWSk8mCIIgCPV9FjuwEDW4m0SY
uMGxY8fECMINS7t27ep0XXJy8nVd7piYG6ePvOHFksmbjtFYtpApzcW6oxfIsxQz+/4OLk0LUm0l
UHSJhlB7vDwV/vefx/lyVw6Kok2T8VDg6792ZOjcXwG4WFBMU0MNgoSthJKURIoPfgGoGP6yA6VV
V1RzJoqXD+gMqNYCFEVBtYsm1ZWzaO0EvIbMQT9iBdavRqCoNicGaEDxARWPNrHXjwMf+Lt8UwmC
IAhCQ36vilhyVQaMgnA9U1+hsHnz5tdluS9cuHBD1fMNPQ1nw9ELHDl/ufFlTIGdGWaeXn3EtfNt
RVBSXH+hQFW5ZLGVCSWlxxaNas/Dt7fg3s7adrolturVCcXDE92tI1A9vFA89Sj+bcHTABYT6oXj
lJzYif5P/0Yx+AEKit/NKM3CykSTKnjqKfp2LBRdQj98OaqtqOo51nzw1IPOGxQP1JKiupteVVCa
tb1+nPjcr/JtJQiCIAjyvSoIgiA0MDe0WPJp8mlUVWmUeVOA/Vlmnl93tPaTbcVASf3vqSg8Nj+t
7O9SAePPsYGolMetNNHXEFWiqigBHfAeuR7DmJ3oh3xC0eq/YjuXhqIzULx+IsX7P0f/p1UYxuzE
a+B0sORp13rqtcgTLaEyQ6iqStGK0ZCXiWHkBlBLwMsHxcNLK37uEWwp/8QwehOGv+zAs22vuhlA
BVVRUYzB140PyxolgiAIgiDfq4IgCELDc8NOw8krLOakydpYZuA4+bbWthfeedLEpmMX6N+uhlAt
W4kWWVKPwqiqil7nwfYjjjsCzXtcC61UFIXUzAIAmho8sBZXt2aJjaIfplK0aYq2LoniAToDilKq
y6mUHPx/lCR/rn3u4YHiaUBRFIr/s4Di3XNRvJqAhw+Fc7tqoog9P9Z/jwW1BMXLB8uSgeChQ/HU
BJOipNkU7fg/LU2ddx3XLVFRWnVF8dRLzyAIgiAIglAHrFYrZ8+exWw2Y7VasdlstGjRguDgYAwG
Q4PeS1VV0tPTOXPmDB06dCAwMFAqQBCEBuOGFUs+2JlhH8wrjTqfqqowadNxejxhxN+7muqyXkJV
6rdiiaeHwuv/Osllq61MnPDwUHi4WwDFJSoFlmLOmqz0jvCrMR1FUbQpMTUIDoqHzumONYqnF9jF
DwBF39Tx8wrbASteTWq8tk62BvQx/yO9giAIgiAIQh0wm8389NNPGI1GgoOD0el0XLhwgdTUVNLS
0rj33nvR6Rpu+FG6/t2FCxeqTbfyYpoxMTEkJyffUItUCoJQN25IsURVVbamX2z0Qon2JaD9nv7j
Sd4f4HwBLbUgh/pIJaqqcrlI5f3vTjusVRLg60VLXx0lNpVfsrS1XYbe3qLGNUuuazwNKK1uk15h
5A7QVXrzczEJtr8POVnXPm/WVFg29srdo9WzMHgUnJoO61denXLpQ6H7GGjTDYwtwZIJx1bCvmVg
tV5HzuML4XFwbE1DzAx03SfIgq/+BJfttmrSDR77GEiHpY9fXRPoQ6H7OGgXCwYDFJvhzFbYOw/O
5zasv18LX61L/1HK7qfh0P7G2+9d6b7lStu52Ayn18D2ua73G/73QN8XIKA15G6F76ZcZ32O0Jiw
Wq3s37+fZs2aceutt5Ydb968Oc2aNcNkMjmcX1JSgqqq1Yocqqq6tNFBqWhSMZ2SkhJtkwIPD7p1
60ZycjLdu3dn//79Ne5EMnfu3LL/jxs3zm0bzJ07t07XXan8XM28CoKIJb8TLllt192Af9Oxi/x2
/jLtWzSp+mVSaKpXVImiKPyWc7nKpjIzHwvTZrV4KqxLvYCHh8IfewZSYvt9+oXi0wLFUye9QikF
57TfPi2hWS/4wz9g3Wg4fUJs09ACQ9+PoU1rwKLZ3ac1dB4HAcHw3ftXT3ioD57B8MDn0CIfTmyA
khtwwNUkCoZ8DEZjhW9ZI7QZAq1i4LsnIccNwcRqBWvu9d1/lI1crDIIv6J2NoCPEUJHwCDguw9d
6Df0cKddKLmYAtnJN2a7FRqM8+fPc+HCBbp3717lsxYtWtCiRYsyESQzMxOTyYTFYqG4uJhOnTph
tPedVquV7OxsSkpK8PLywsfHh2bNmlFSUkJOTg5msxmLxUJRURHt2rUrW2PPw8MDm81GRkYG+fn5
5OfnExQURPPmzSkoKCi7d2lkSWXmzZvnIB7MmzePZ5991u1n6oaicn4aWtxQroOXxoIgYsk1wFJi
o1htiI12r+JAXlFZlJzlPLqk4LzDAqzuYvDy4H//me6g4Ht6KIy4oyUqoPPy4J01p/HWeWD09vx9
OoUKujvHS49QSnE6rLK/qff0hZ4zoXMM9BgJZ966Pgbv141WEq0JJZYUWPEcXM7X3vY+9C4EDYQW
i9wbYF8zsUQPvkbgRl0cUQ89p2pCSe5W2DQN8vPBNwr6vAvBraFbPKxf6nqSy+69/vsP4erZOXAo
/GESBA0A34Vgqq0tGqGJETDDlpfdj3wShEpkZ2ej1+tp0qRJjeedPHmSY8eO0aNHD/R6PTt37mTb
tm3Ex8dTXFzMgQMH6NixI02aNOHo0aOcP38eo9FIeno6Fy5coFOnThw4cIDz588THR3NhQsXsNls
eHl5cfToUS5evEiPHj349ddf+c9//sMDDzxAnz59AMqm3rgyBadUKKkoUlQUUEqjPhRF4dlnny37
u+I58+bNQ1XVsuvnzp3rVKRwRZSpLJxUPlZ6r9L8OLt3xWtUVS3Lj7uikNDw5P22jbff+ZjtB37m
nBnadb6dYWNfZnT87Riuwv1zfk5k2OgVLNiYSBc/g1TIjSyWZJmtKPWSF66JXMKm4xcottnQeThu
YqRaTCj1WH/l1HkL2w47LuwaFmAo60g/33aW4hIbLw9qg95T4fc4CUfVN8GzXV/pEZxRkg/75kK7
BRAQC74BYMoFzwC4/VkIjYVmRshNht0fwhl75MmwH8A31z49Arj7c4joCP99DvbtghZD4eFJkL0E
Nu3Spk3kb4AjQGQc6IFjCyHpn9WLM7XlAaDVULjrL9CsJWCB7F2wfVr5QMK3G/SZBMFhkJsEx67y
YL/EAsUWMARreTiWCqZt8N1zoDdAvrl8Wol1F3z1smaPdu9C34Hwy2RI2ghNYiHhY8hdAaeM0Oke
IBd++hB+2qbdy5VzXLGr7z0wfCbkrobLEdAmDC6VgI8BCIM/74SNj8DJxhKFpIfwv8DtwzQxo9gM
J1ZA0qLyaIcmUdDnVWjTUZsGdWQp7Fup2dpZeXc/5zilpEkMhAYD57Qpa/l2P8pP1QaiwcGQm2o/
14X6hKpTQ1zx1ZrK0RjovgC6xsDF1bDqLfCPh4enQnEmrHpS61tqarMt7OdnLQNzKLTrBdZ02Dcd
iIPu8aC3wK/zYM8a133eLTu64E/XAlMqWCxgADwNmnBZUzke+7o8CurhdfDbNNi6pm5t4Zi1+mtK
/b22/l0fCj1fgNAYrQzZ22D7h5pPXA++LWAymSguLq4xYqGkpIRTp07RsmVLfH19AejSpQvbt28n
IyMDRVHw8vKiWbNmAAQHB5OTk8OxY8c4c+YMQUFB+Pr6ll1z6dIldDodqqpSWFhITk4Ofn5+nDhx
guLiYqKiouodQeHsemdRHuPGjWPu3LkOQknl/1cUJiqm4Sy9UgGmdF0WZ+dW/H/Fe1UWWCpGqVS8
xpkIJFwDLKd4bfQEjt2WwILEGQT6wcGNi3n75dHQcg1j72xzXRZr4cKFAIwZM6bGY42ZG3Lr4KMX
Cq4zoaRULlFYsNfJmhEWM2o9vgjWp150FA5UldvaNsWmqnjrPZm57jQGnQfvPRaKTa1dKvFQQOcB
Og8FnYf2t6q6J7Eoina9hwJenorTNFRVxcO+sK2z9FVVxVMpz4ez6xW0z/UdBkhHXeOAPgvyrWhv
IvVoU0cWQNch2mC6AAjoBYMXQyv71sun0kEXBoHB2uA7qLV2PLib9jsoVvt9bFf5fZoNgU5hcGwD
lOgh4kVoF1VNplzIQ5Nu0P8F7fNTW+GiGYLi4M54uygQDINmaoNPSyZ4RkOPgVfXtpfT4EQW0BL6
LoaR30P/N0BvhdO73H87HzAMIqPgTDIYWkOPmRAe5cY5Lti1LJ0h0CoAzFlw5mBphwRZW8vFgsZA
4FDoMwpIh19WgMkC7UdBr1I/CNWmz7TpqE1FsBohalL5587Km11JCPKP0NaQMO8vH9xVrONj26oe
dwdXfNXVclxpdGHw0Nfw2LflPw99pPUdB6Zr7bDZEIgcAHfZH84PvK/Zp7Y2W0rwCGhmhSNJ4BMG
fT6FXvfAia1QYoSoV6FtqHvtwlU71uZP1wJPXwiN19bJsWTBZXPt5TixC4rt12clwen0urWFcyWu
XVNj/x4A/RdARC9NzLpo1iLrBr0Ben3j8W2hRpo1a0ZhYSEXLlxwOJ6Zmcnhw4dJTk4mKyuLS5cu
OXzevHlzmjZtSm5uLoWFhQ7ihNFoxNPTs2zqzdmzZzWX9/REp9Ph6emJzWbDw8MDVVW5dOkSVqsV
f39/wsPDiYyMLBNl6krF58fS/5cKIxXXFHE1DWciTHWCzrhx43j22WcZN26cgwgyb968KveeN2+e
wznO8l1RIJFpOI1IK8k7xbE8PxLGjub2Lu1p06Y98aNf5+3RA8g7l1N23qkDaxgd34f27dvTc0AC
K3afKvvswJoFDOvTk87t29P5tj68vGADFrSIkQF9Enhu9AA6d+7Jgt2n+G13IqOHDaBz+/b07FMh
HUseiTMm0LOzlsZribuxNKBoUvr7euKGFEsKimxcr+ERm45dqHrQqwl1jfcweHnwj905VTrMJ3oF
oigK/9iVzS9Zl3ny7iAsFluNHauqqthsKn/bkMnt036ixXP/ofNrB/l4U5ZL4pSqqloaqsryPefo
/NoB9GN24f/sHt749mSVJHSeCk9/8RuGp3fjrfdwItoo/PXL43g/vYvY91Kr5F1RFH741UTYK8n8
ef5PNebt9OnTfPjhh9x5553s3bvX6eeDBw/G09OTuLg4CgsLf2diiUX7KZ0X32IghIZBQTIsvw+W
9YadqzUx5c4R9gdx+1vb0AhoEqENfgD8Y6BJgHacc5BVcdB5DtY/B3vehwP2+cSBwc7z5EoeSrJg
z4ew8UlY/zKsf9+uB0SAJxA4UMvXxQ3w1aOw4j5IO3yVjZsPPz4HqVu1gYuuJYQOgfsWQ/+RWj7d
IlMLzd80Af49Szt069BK6dRwjit2rVhfqx/XbJf0IRRYoDgLNk1pXCH9xgi7qdPg16Xa2iHrnoY9
G7TjN4/Q3rCnTdMielaN1gZr7f5oFwedlLfy1Ci93U+t5vJjbV+Fp/aW/4z8ulJ67gg+Lviqy+W4
Cvi0BmOFH/8wbapWyQnYaX9Y6vEeBLXUohQO7XKtzZY9WaZofrbnfTDbbZ40BZLegl9Ttb6qVKB1
uV24aMfa/OlqilIJOzXfGrUF+ozQxMp9czWRtbZy7PkQTGbNr3e/BUdS69YWDPe7fk11/XvgAAhu
qUUcLXsQVjwKaVs1UVKvb1y+LVRLWFgYXl5eHDx4EJutfIG70u18jx8/rnWXej2ZmZllnxcVFWGz
2QgICMBms2Gz2SguLi57VisoKMDPz49u3bpRWFjIf//7X9LS0rj11lvx9fVFr9d8wMfHB29vb7Ky
sjAajXh7e9erPKXCQ01CRqloUpvo4aoI4+z+zkSWUgGlYrTIs88+61J0iKsCj3D1MAR2IaGPHzPG
jmXG4hUc+PkUFgwMnPh/TIy/HYC8nN1MGPs2xj4T2LZ7G68n3MyMsWPZdiqPnN/WMPG1ROJnrOCX
335jxYx4tn/0Dht/y9OuPb0Hc+cJbNy4giFBPzNh7AyMAyaw8cBu3k7w4+0JE0m7VIzFfIyDlp4k
bt/N4tcHsPHt19l9Kq/O5XIWUVL5eGPnhpyGU3wd7+ZyyuxE31M8qWukTKG1hC2/mqp07n/oFoDV
amPcP47jY/Dkk8fbUVjkXCxRVRWdh8KD89LYeOgiRRVWgM27XMxLX6XzxqoMUt7uSmt/fbVpeDfx
ZNrKk/xtQxamy8XlQ0lLCe+vPc0/95zj+IwYUGHKv07y8cYs8i0ldA1pSlGx4xeOtUQlYtIBzuZp
b+X3Hjfz9d5zPNZDW4dFE2Yg4dM0LhQU8+cnnqgqqhUU0K5dOy5evIjVHlrt5eVFly5dHM676667
2LVrV9k80e3bt9OpUyfS09N/P43G02AP67aAxVweFZK1pjyC4NhK6DlQW6NBr4fzu8DyF+3cIHt0
RFa69ma8RRQEBoB5l/Y2WW9/A1ycVR5Jcdk+GNVXM2/SlTxYs+BUKrQbAA+8CsHR9jSNjoPo7K3l
4fMnUrXpQldVjMqCPS/DHj20ioXwodob1tBx0CkFjjmrk2rSMqeV28OUqk3xaRLmuJ13Tee4Ytey
RnJCmyZ0TYU8J7bwNGhRHqXdSPZGsAyE4GHw8DAtMuPESjifZvelMO13xFTtp4wAzVdKXCiv1R71
1yTA8Zg5EzyNmshYYxtzUfCpyVdrK8flqyRgFac77k5UmTMr4ZeB0DlaG0DvnFdu49rabCmXszQ7
lFjBCmAGs718Jnsd6fXYP6zZ5ysvalqbHWvzp6tJ7mHw7ahNW7GkaLvZnM9y0R+c9at1aAu1XVNq
3pr6d6O9nnP32++RDz++XJ5Up0bi20LN3ZTRyO23387evXvZvHkzkZGRNG/eHE9PTxRFwWq1otPp
uP322/nhhx/Yv38/t9xyC6dPnyYoKIjWrVtTUFCAyWTil19+oX379hQUFFBYWEh4eDhNmjQhLi6O
AwcOcPLkSW6++WbNnS5fxmKxkJOTQ3R0NJs3b+b777/nlltuoWnTptx8881lgkpNVJz2Uvp36e/S
9T8qCxkVp8dUFCNKI0KcrS3iKtVNw6mYbqlwoihKlTxWfN4ujUxxll+hMeBHwscraLcmkcQViYyd
MZFzGBkwbAKvvT6aNgb4bXsipwIHsGDCMAIN0Gb0RA6siGfZ9t9YMKwPi9f0pE2bQCx5OVgMbfAz
WMjJs0/N1Ldj1Og+tAn048CKGeS0iWfx6HgtnbEzaNMnB2/2YNC347kJw2gf6EebAQl0+Wgjv+Tk
cU8bv3oJJterUHLDiiWBPnq47tYsKVUCFDYfO0+/di3Kj3nUrRpVVeXL3eeqHL+1TVPwUBi9+CgX
C4pZNa4TlmK1WpHj1AUrd7+fyhmTFaO3Jz++eiuRNzfhndWn+eD7UyiKwuWiEkZ9dpQtL0c5Fasy
L1oZ8tav/JxZUHafxU+G88c7AigqUXl43mE2/3yRoXMPsy89n4zzlrLzBnRpRomtPH8GLw9e/vo4
Z/OsDlshW0u0VX1Vm4pe58GTnx/lQkExPj4+3HfffVXy9J///IezZ886pNGlSxeaNm0KQHp6Or16
9eLMmTNVvpROnjzJr7/+SqdOnX4nYkmA/e2dWXvY9XFhaog1XXv73iYWOlm1AVTqGggeB52HauHi
JzY4zje3msv/Lq7lHq7s2uBrXyjVAJzaBntToceI8nuU/jYYHQffV5ObR0KPAXBqEezbBmfsP6YF
0CNGWxj0WOkbOL39x+oofjjUld75ANDVc9zZDaPEfO13z7BawajXBsalAzFPe8h1Sem6Ibu09TAi
/wihcVqkQ8Q4CI6AFVPKbZk2yx6VUJY45OdCExfKa0rRBuA+MdAiQPP9M0vhq6Wgj4IRC5xc5EJ9
4oav1laORoMempWKSi0hKLQ8Uqe2NlvR90ATcEuDhMvWC7HWrV24aseSWvzpavUhxemw/kmwBmg7
UQVFa9Ff6+074dTqDwHul91ZW6jtmlIx3JX+XVcpL67eQ2g0hIWF4ePjw6FDh0hOTsbX17csyuP2
22/H19cXX19f+vXrR3p6OmfOnKFZs2ZERETg6emJ0WgkMjKSEydOkJGRga+vL127dsVgMHD27FlO
nz6Nt7c3TZs2Zc+ePdx7770EBgYSFRWFqqo0b96cAQMGcOTIEfLz8/Hz88PDw/VA+uqEhMoRG9VF
cFQ+7mwdEmefVXdfV487y09tea74t6xX0hgwcGf8aO6MHw3AqZ838M6EiYx92cCajxPI+e0c535Z
y51dljlc1fO3HKAN2xe/zkeJ28gzBNKlSxvyLBYs9u9Hg18ggQZNnM777RwGv9spX8PVjy5d/Mj5
eQ/4+RFY+oFB+yrOq+c8nMpTbxYuXHhdCSY35DScVr5e9Vrj41qiKCr/77/Zjse8vFHrECzjoSh8
vbeqWHJne182p1wgcXcOD3UL4MGYgGrTOH+pmOg3DnI2rwiDlwdn/taD29o2Reeh8KfYlhVzyd7j
+Xh6VZ4KA79kXab9q/v5JetymXr+w8tRPB7bEkVR0Os8+O75zgD8a38upy5YHYSJZ/re5PD3WVMR
czdnVRF34m9tjqqCt5cHi7adZWlSNoqi8PLLLzst29NPP11lPmnpm4Sff/6Zdu3alQklzsdwv5ed
IPTQ6S/a4p259nUXLqZoHwXHQ+lc4HZDtbf5plT7oMWqLVZKS23An58CObu0qRqhvbQBzrHUumfL
lTyUzuFPnQLrp8Axe+h36Vt8sz0N/5jyY20irvJg3wIBHSFyXHlIuj4Y2tgHGGazNugvAfQB2tga
PbQKc56eT3R5Oq0Gava4nOY4SKzpHJfqlqqD0ooDxKu5aZYVoLW2aGSpv4bb1zHIt7/pvzlem3Jx
ail8dS8sf1pbCLNJBOh9ISddO88YADmpYLJCt79Au27Obuacy6n2tWeM0PcN8A8or8vbR2r2K7OV
G/WJG77qcjmuMe3GaX1CsV3w6D6p3Ndqa7N1xZV24aoda/Onq01JFmx5XxPrgkdAZGzd/aEubaEh
/K7Uv1sMsEcEBcAD38JT32trJV0vvi0AEBQURFxcHAMGDOCOO+4gKiqKTp060blz57L1Q/z8/Lj1
1lvp1KkTbdq0cYj88PHx+vHNZwAAIABJREFUoXPnzoSHh3PzzTdjMBg4c+YMBw8eJDQ0lOjoaAYM
GEBAQAC//PILvr6+ZecC+Pv70717d+68807atm2LTqeTShEaNT+veZnbeo7m5wrKRJsuA3l69J3k
/HIAgMA2ftx829Mc+O03frP/HNi9jQUT7+HAmreZsdHCRxv38MvB7SR+9FyZOFKZwPYtseT9Vi6C
WHJYsWAxKReKSzWSBqO6iJLrae2SG7L3CPH3rtfuMddYLuFwboHDNr/4BLi9u4+qatEVhzIvOwgC
qqoS7K+n/8xDNDV4svTJDhRaSpxGlViKbLR7dT+WIm3azfh+rfFQyoUFpVJ+9Lqq2tzxnEJuf/Og
Q/TGyLuCuCvcSIXZPHgq4KP35HKRzeH60AAD7YJ9sBSWlF2/82jVuXWt/PU089FRbFN5a/Vppq46
WSbMDBs2rMr5+/bt48iRIw7HjEYjvXr1Iicnh6ioKPR6PfPmzWPSpEmcO1dVdAoJCbl+G0npAo0l
QJPW9p7CDLuXasfOb4SsERAcA8PXQYHVPs3gHOyuoHhnbQDsi1Bm74LL6dpaFj6twZJWvy1xXcnD
ZftgLHQEmIKh00i7Qxm1N5XnN0LuGAgYCIP0UBKsLSB4NTm/EU6N0HaV+MO/tQFP6cC6OB1+TYYS
g7bAbkBHeGCBtrhhUHWDayPc9w1czIRm9jUbfqq8Y0QN57hat85UC6tVW2xzyD9g90tXZzecnzZA
32HQear2U95DwU9rSnsK6DwMwu/RFlo1RGgD8txksObDqX9CwUAIHgXDYoBgbSeWkl1uRAlYYc80
CPgYmvWCR9Y5GYjusotNuW7UZwU/qc1XG6QcDdx/VOTEh/CT2b4opxk2jYXwN6B9R7hrmLatcm1t
ts640i5ctWMt/nQtyN8Ge7bBXQOhx6tw4sm6+cPVusaZf2ePhKBe8Od1UKDXBPqCJO0743wj8W3B
9adVRXFpzZCa1vioGBFy7ty5soVbPTw88PDwoHnz5r+jF1PCjUz7ngl0IYGxo19j4nPD6NzGj1O/
7OHjj7bRPv4j7Zw+I/CbMZG3F3dhwrA+5B1YwdixHzFgwQoG5JgxGIz4GQxYLDms+Oj/+MWcRx9L
VfWjTc9htHl7IjMW38nEhJ78vGYGHyWeY/qsK7craKlQUnlKzvXADRlZYvBU8LyOV4BWsS9SW/pF
Y2zj9owiRdHkldMXqsZWvbv2FDpPhRMzYjB4eTj9IjPoFJ758hgW+zomiqLwf38McxA9Mi86ph0T
2pQSe75VVaXYptL5tYMO6bdupuezUe0dImVKhSFLsa1KPh7pHkCRpcShXJkXi6oIQOE3NeGTLWcI
eTm5TCgB7e1FdHR0lXS//PLLKotthYeHU1hYSGhoKIGBgZjNZp566imn4Z0tWrSgefPm13dDKV2g
UYc2CNg4Fs7Y58KX5ML6sZC6Wot88NFrW5n++0nIqbBj0+VUbRE+gBNp2oDylP1t//lt9dtm05U8
nJgHaclgjIGeIyF7jZYfQyj4Gu1pPAenDkNwHPjmw84lV9fOJbmwZSykboAC8/9n787joq72x4+/
ZgVm2GURMMcFF0gk3Aor/N60q3VTu3m7aaW/Msu6N2/LbbV9uzdbLL/WLbtlfdvUXFq0spJKXHAB
FVBAGcVRARVkkX1mmPn9ATPOMKgooKDvZw8fMTOf5XzO53yW8/6czzlNgZL6xkDTD/9oHC614Rj8
9gIcK4TA/mBOh99OErio2QhbVzb2nVFf2Bi0yNvT+mlau289tqOoMThhpfHJsNrr3OTfvlfhlzeh
3CVgWbm7MU/3NW1Twbvw2ztQBfSfBFG9God6/emdxoqWeQ+svBcOZYFvHAR6wd53IGXFmaWldies
vA0yVjbuS4CaQjCthF/uhB+aXo84k/3pVt5PU1bbazva8/zh9q9b49CwXk3pKtgDae82tsrocTf0
6X/6Y/Zstea4aG0+nq48nS95c6GoBIiEKyefXXk4V/Oc7Hy+Nx2sfqBrCrb/8GLjdaIzlW1xXvTq
1QsvLy9SUlLIzs4mNzcXhUJx4bzuLC5qXqEJvL/8Y5L89/H0vbfxxz+O57HXvqTPpJeZ91jjQ0f/
HqOY9/5jFHz5GqMSEpj0wMckPTaPx0b1JeHWR7k2NIfxV8RyedKtbO9xK1MuC+XQvmKPdfn3GMVr
7z9AwfKXuCLhCh77uITH5r1Ef337t6G45557PF65aem7zkwxYdmGTt3b6beTRrb7Ms0NNv7wcQbm
LtrRq8IOP06No5tO0xgMqC2l/tMbzrihzModpdz83m6PYIjdbmfF3wdy/eAg9xYsLr9vP1DNyH9l
OX8be2kgPzwUg7mpo1UvHxWJL2SweV+Vc55dLyXQJ9Sr6dUaBbd+sIfFm0vcAizPT+zJE9dHeaT1
SIUZw2PpHkGQn/95KVf383Nbxto9xxk3N9tjWteAiuO7jz76iOnTp3usLygoiIqKCrfvpkyZwooV
K/Dz8yM/Px+9Xk91dTXBwcFYLBa3db3yyivMnj274wvDR8PlCiMa+STCrf8Llb/D8kdbrrS1Zhoh
LrbjQojm7toqedBK+/bto0+fPudkXWazmeLiYiwWC3q9nqCgIHnFRnTJsp+ent5lH6qWlZUxdOjQ
Dl3HxOUbO832XpQtS7QqJVH+Xl12+GCbAiyugR6F6oxfKVIAS7Z4vjpit9t5/a+9mJgQ7BZYcOWt
UfLajwVuQYfBl+hOBEq0Sp75aj+b9lY6hwNe/VAs/cO9na++ZBfWugVKoLEPlecm9vBMqwKPjmgd
wY+RfX09+hW5NjaQR8dFoVaeSF/vEG/uTgrnT/FBznnVajU333yzx/p27drlESgBWLRoEWq1GpPJ
5OzkNTMz06MJqEKhYMqUKXIVEUIIIYRor/t3rZaoqCh69epFaGioBEqEEB3uoj3LTI0P58XfTV0y
7Qq7naPVZrr7Nr2/rVSjUKrAZj2j5Wwweg6BedPQbjxyfRT19baTzmex2flme6lbkKJnsBcqBRyt
tPCPL/NZnt7YF0XfMG82PTUYf28VDfYTwYQ7PnLvD8Rut3PHVWHYWlit3Q5zfjjk8f3V/f3Re6ud
faY4mK02nr6hB//57TCWehtH3hpOWKCW8ior3R/a6ky3v7+/s6MxVx9++GGLLWrUajVHjhzBx8fH
+d19993neVCp1V27vxIhhBBCiFbat2+fZIIQ4oJ00QZLxg/oxssp+7HZu2Ynr4WVZgaHN31UaeAM
gyWWBjvVZs+OWwd298FmPXWTm6VbPDvlLKowc/28HNZkV2C32/H3UbPqgYEM79XY8sPWFHyw2+2o
VQrnyDeu/jQ4GEuD+7rtdjslVVaqzTaP6WeNjsDSQj8m3holf5y7k+r6Bj6b0Z8gvZoGq52r52RR
b7U50/Hkk0+22HJm/fr1LX7/yy+/oNPpnJ9NJhOZmZker/s8/vjj5+xph12jR2GpljOZgNrU07+W
1ZpphLjYjgshml9XJRta7Vy9giOEEOfDRd1+LTrIhz2ldV3xUu7WwStKDfamN6pae4G32uxYW3h3
O8xPg+0U4xDb7XbW5bmPNqNQKHhl1SFnAOPe/+lOnzBvlIDNpTWJ4/85hbVUtzDCTlyUj8f6vDRK
Xl51iAab3eN1m2G9fD2+91IreHL5AdbtOc7IaH9uGdGNBpsdU1k9Ow/VuE37yCOPtLiNR48e9fju
tttuY9SoUW7frVq1yqMFikql4rnnnjt3RSEkBorS5EwmhBBCtNd1VQghhOAi7bPE4a+DwrB3xY5L
FHC8zuoWOFDqQ89oEbamvkSaC9KrOEWsBG8vFWv3HPcIdPx5SDD2j6/k7Sm96RvmjYLGLmFcJ7Pb
7aiU8Mw3B1tcdniA+7CQdrud/SX1LPj9sMf6FAoI8FG59ZuiUSl4edUhXv3hEKF+Gn599FIabHa8
mwIursvo3bt3i2lYs2YNx44d80jHX//6V49pP/zwQ490GQyGFluVVFV10HCSCTPkLCaEEELIdVUI
IUQ76/QtS45U1xGu9+6QZU8cGMJbqQVUW7pY9/h2Bc1Hq1UaRmLLONDqpiU2O7TUK0lZTUNjgKOF
gImlwU787O3sLqppClicWNnW/GpQKrCYW+7rpDFQouDRr0yk7K5ocRpvjdJtem+tigcWtTy0owLQ
e6nclv2/awp55usDBPioML46xJnGOouNTze6D50VGBjoscw1a9Zw7bXXotW6B20UCgUDBgxw+85s
NpORkeGxjLvuuss9n202evbsyZYtW1rsH6WtFBFDsSfcg2L7B3I2E0IIIdpye5VwD4qIoZIRQogO
V1ZWJplwkrp/Z9LpgyWHOzBYAjBjSHfmbT4EXewNVV+tyu2zst91KDIWtXo7VApQtjDpqowyHrg2
koamnlYdr5lU1TUQPXsb5dVWQnw1lFRZ3OY7VFbPuz8XMiMp3O3VFMffSqWCaR/msXhLCWF+mhbT
tPdoLX3DGl/FUSoUPPP1AVbuKOXhsVG8/XOhR/zGsWyVUsHcnwt5Ylljh727XkpAqzqxcat3VXi8
LlNZ6d657eeff87UqVNRqVSYzeYWW4y4+v7771vsBPZvf/ub2+eEhAQKCwtb7AOl3QImQ+7GHjEE
0hdA6R7pw0QIIYRobYBEo4fg/jB0pgRKhBDnREcPvduVHZZgyZnJL68mPiyww5Z/e3w48zYfwm4/
49F3z9+FXWHHS+XetETZrR92hRJFK18r0qqVaFQK6izu06/JLifzYLVzmF+1SsEGYyXXvL4Lm83O
fX/ozuiYAP7yn93uFXaFggcW5RMT6cMfBgRgbuqoVaNScqzKytCXMjhUWk+on4ZXJvXk7k/2eqTp
1g/y2PF8PHY7/PX9PSxLK2F8fBAPjong7Z8L3aa12WHHwWou6+nL/7y2i43G4yiVCg68NpQQl2CM
3W4n19obyHEPzOzdy+233869997L7NmzWb9+PUqlkpycHI9WJABeXl5un9PS0loMgDharNTW1tK/
f38KCgp4+umniYiI6NAyoYgYCjdI6xIhhBDijK6fkgVCCNGp6v4SLDkDu0qOc2P/qA5dx9vjonnw
R2OXuWQq7BDl7+X5vV8EVBa2bscrFYwbFMRXW0s8Ok79n9d2cndSOF5qJb9kl7Npb2MrjP9M7cPd
SeGoVQqCdGrKaxs8AhijX9/FoCgdvUK8USrgQGk9Ow40Fvqk/v58/2AMSoWCmZ/uc+sbRaFQkHGw
GsVdG53fxV+iZ9nfBlJcZUGhwG16u91O4itZzs+RgVqyXrzM+WoONL5JpLnqEZQVe1EofvTIgy+/
/JIvv/yycfQef3+ysrLo2bOnx3TNX8sBKC0t9fjObrcTExND3759+fHHH7Hb7bz55ps89NBDcuYT
QgghhBBCiNPU/TuTTh8s2VJURpXZiq+245I68hJ/uvtqOVxt6SLFSEG43rMCrwzqg62VwRI78MH/
68uK9GM0G62X8poGXvuxwPk5SKfm87v788dBAVgb7DTY4L939G1qXaJwa5GjUCjYVVjLrsLapuBG
48JnjY7kf2/vTV3TKDiJff3YkHfcI1DjCDr07ObFb49eis1ux99b5RHGcp326v7+pDw+iHqXIY/t
djuq2BtRXTqJ3tlLW3xlxjFdQkICv/76a4v9mAAtdtgaGxvrsUyFQsHu3bvJzc1FoVCwbNkybrrp
JjnrCSGEEEIIIcQpVJmtbCnqXH25dInRcL7NK+zQ5SsUClZMHoRKYT/lSDCdhUIBGpVnxV/Zfxyc
weg+XmoFr9/SC3uzkXEcfyuVCsbEBnL47eFcE+NPg+1EkOKmId14b2ofVEpaHFWn8Ts7kYFatj0X
z1uTDdTV21AoFNjt8Ms/Y/HzVnus1263ExupI+/fQ/DRKlEoFHhrlDz0x8gWp33w2khSZsdR5xxK
uXF8I1XPK9Fc/TgAN998M97e3h7pVKvV/OMf/2Dbtm1ugRKtVus2bffu3T22b9asWSiVyhbzrW/f
vlRVVUmgRAghhBBCCCE6QZ3/gg2WrDIWUmW2dug6NCoF9wyN7BL9lijAo88SAFWfa7Dbz2wD7vuf
7mS9cBmRQV5uQZOpI8Momz+Clf8Y2NSfi/ty66027rwynLJ3RjAxoZtzXse/Yb38WP9EHHtfHUJs
pA5Lg92ZtwpFYweuBW8OZXhvP+c8gTo1q/4RQ/qzg93WabPDS3/uyV+GhTin7dnNi/w5Q3n1Lwbq
6hpOpM8Oql7/g+a6N9zSe+jQIbd+RyZMmEBtbS3z5s3zyBO1Wk3v3r15/fXXKS8vJy8vr8W8279/
P97eJzofvvTSS8nOzsZoNKLT6eSMJ4QQQgghhBCnUWW2ssrY+YIlignLNti7QgYO7x7E01fGdPh6
nlizjzV7yzp09JK2Uilh/fQE1C0MZ2NZ/SgNBza0uvcVR8e2aiVU1DbQYLfj761GpYQGGyd9faVx
3sbf1EowN9iprm9s3aHTKvFSK2mw2bGdYn7HthyvbcBmhwAfFXY7Lc5jt9vRqJRU1Fqx2yFQp8Zq
szvTYKexLxfVZVNRX37fSdd37NgxfH19PTpsdVVfX3/K35urqKjAy8vLLXAihBBCCCGEEOL0Xt6Q
w9bDnW84ZWVXycCth8v4Zk9Bh6/n1TF96B3UeSu9dux013u1GCgBUMbciOIM3iVyxCSsNtB7qfD3
buyfo8Hm+F1xinkVznmVCgV+3ir8vFWolIrGQMZp5nesR+/VOJ/NzknnUSgal6n3UuHrrcJqszu/
t9vtKLCjGvnAKQMlAN26dTttIORMAiUAAQEBEigRQgghhBBCiDP0zZ6CThkogS4ULAH4OMvEmv1H
Onw9n/55IP5aFWfS/8c5Y1dww4Dgk/6sMlyJXdE5k95BGQIaHZrx76GOu0XONkIIIYQQQgjRBazZ
f4SPs0ydNn3Krpah89P38m0HtzDx0aj4eVocOrWq022/ArgtLuyU02iufAy74sKOltjtTc1QQmLx
np6MMuIyOdsIIYQQQgghRBfw7Z4C5qfv7dRpVHbFjF2YZeLlDTkd2umrSqnkl2mDCfTuXAGTbjoV
PppTp0k54HqwKy7YA8sOKFCgHv8uXjd9JGcaIYQQQgghhOgCqsxWXt6Qw8JO3KLEWa/uqpm89XAZ
d/+YxqLsAx0WNNGqlay8NY6RPfywN/13foMEdgZ39zvtdAq1F9qJ77c4pG/X1jgcsSp+Ktq7fkUV
mSBnGyGEEEIIIYTo5KrMVhZlH+DuH9M6bR8lHvXqrjIazulcHhHEoNAA+gTq0WvU9A7Ut+vyP8s4
wjubD9GAgvPWZsNu55f/F09gUyesp2NN+xBr+kedemSfVm44dkDV91rUV/4ThXeAnG2EEEIIIYQQ
opPKL6+m2mJlX3k1O4sr2FxU1uW24YIJlgghhBBCCCGEEEK0B6VkgRBCCCGEEEIIIcQJEiwRQggh
hBBCCCGEcCHBEiGEEEIIIYQQQggXEiwRQgghhBBCCCGEcCHBEiGEEEIIIYQQQggXEiwRQgghhBBC
CCGEcCHBEiGEEEIIIYQQQggXEiwRQgghhBBCCCGEcCHBEiGEEEIIIYQQQggX6gtlQ26LvYSh3YMI
13ujUSrwUqtk7wrRZNuRcskEIYQQQgghxDmhBGxAZb2FPaWVrNp7uMttQ5cOloR4q3lgWH/iwgJQ
KBRSIoUQQgghhBBCiPPM1vR/Py8NQyOCGR4RzJHqOhZlmyirb+gS29BlgyW3xvTgrzGXSJBECCGE
EEIIIYToxGxAqN6bB4cPYEvhMb7fd6TTp7lLBkve+EMc/YL9pMQJIYQQQgghhBBdhA0YFtmNfsF+
vJ1m7NRp7XIdvP7n2sskUCKEEEIIIYQQQnRRAd5aHr+8f6dOY5cKlrzxhzii/HVSsoQQQgghhBBC
iC7MW6PmwWHRnTZ9XSZYcmtMD2lRIoQQQgghhBBCXCACvLX8qU94p0xblwiWhHir+WvMJVKShBBC
CCGEEEKIC8iIyG4Eeak6Xbq6RLDkH8P6y6g3QgghhBBCCCHEBcYGTI41dLp0dYlgyeCwAClBQggh
hBBCCCHEBai73rvTpanTB0tui71EWpUIIYQQQgghhBAXKBtwQ9/unSpNnT5YkhAeKCVHCCGEEEII
IYS4gEUH+Xaq9HT6YElnbI4jhBBCCCGEEEKI9hPgpelU6en0wRKNSimlRgghhBBCCCGEuIApO1n3
G50+EuGtVkmpEUIIIYQQQgghLmC2TpYetewSIYQQnZ2lPJs3HpzDUYsFAL/oybz4wgTn78dNa3hj
9kIqmz5HXn0/D947Ek07LPsEM8bU1axebeLmp2YSrtW26zYIUVuewdt/n8PRps9+MZN58ukJ+FxE
5UyOkwsrHzrDdjRPw0lpdASFhBIzbBxJ4xMJ12s7IDUnv460x/EvhGhfEiwRQgghTuN4YQbfLPiI
7cYSvAMGS4YIIcSFxlJDWZGJjSsXsCV5NVOefpwhhvYbaEKuI0J0PdIhiBBCCHEq5mK+mTOf7cYS
yQshhLgIWGtMLHp5PvvLzXIdEeIiJi1LhBBCdH66QIYnJXHU3NiM2j/acM6WbcGCRfaAkGNFyH68
QLYjhKRbriO46T1Ni8VCWWEeWZvSqXQ52VtrcvgpJYeZE+LbvEa5jgjRNUmwRAghRKen0UYyZvpd
XW7ZQlxIx4qQ/XghbIdaF8qI0aOJatYnyY1TC1n11kuk5FQ4vytITYN2CJYIIbomCZYIIYQ4Q2YK
MlJJXp2M0WiissbxvExDUE8DMfFJJI1POmXneLXFeWxYmUyuKY8CUxF1Fg1+ISFERceTNGkCMZHu
74m3tZPAnO/e5IMl6ScufpoQbnzqGa7sF3rKZW95/58sWlfktqy6ikxevfMOAAbe8jQzJ8S2ew4f
yVhLcnIqJqORoxU1+EUYMBgMxI2ewIjYyJPOZykvZMvq79iYlk1pSQV1FgugwTsggF4x8YwcN4G4
fqFu85Tm/cjrz39GXdPnpMfeYHTgfpYuXE6usQh1SATRMWO4697rqC3O4PUH51DWNO2gO1/grjEG
9qelsDElDWNODmUWDZHR0cQMHUPS6GH4t1AMjqR9xKtvJTs/D7r9ae66rvX56D5/AFNe/zcJATVs
Wfkj2zMyMB0oAV0A0UOTuGHyJKICtYCZ/WkppCSnYMwxUmnRENQzhlGTJjFyWL8WOwM+m/xsSzk/
1fG2tindZRYdhuhoBiWN4cqkeI/OH093rLTXPmxrWZXj5NR5fK73Y0HaGpKTU9lvbCpjMbEkJI1j
ZKKBrIXP8VmyqencGc3rn7zY6n10rrejTYEdfSSjbpnAFpf9bKkoBmDD3H+wLP3EKzTD7/8Xtyb2
aqFMfsobr63G2vQ58oqZjNJ814bryJkd/255X11Mbuoa1ianUVBURJ0F/EIMREUbGJQ4mhEnOe91
pn0ihARLhBBCdCHVbHh/DsvWGVu6NaPsgJGNB4xsSUll+gsPExOq97jxM6Ys5tOFq92aO4OFypIi
ckuKyN20mkG3PM60CfGtGs3mdArSFvGpS6AEdIy6/wmuPEUl9/zFocrZ8Pn7LEvOdPu6ssjEziIT
OzelsGX0dKbdPsbj5rQ0by0LXlnYwogPFuoqSsjdlEzuphQSbn+Yaded/ElpZWEGC99ZjKkpCGYt
KaKg4mR34xVs+Wwui1Znuq2vMCeTwpxMtqWP4/7HphHcwTfSx00ZLFy8kNwSl22vqSB33UqM6TlM
e+FeapM/9Uhn2YFMvnkrE2ML5a1t+dlO5dxSzrbF8/lmZbqz8gUVmHLSMeWkszV1Mn9/aELbKipn
uw/bUFblOOmA46RN+3E+y5JzXL6swJSZiikzlayc6cSZz+E58DyfU9R6HRpwBkuslhoAokcPQ51+
IghiTMnBktir2bFrxpSa43KsaogZHQsp351lXpz98X8kew2fvvUZhTXu5byyxERuiYncTSmkDB7H
tJmTm4LJnXefCHE+SQevQgghWm1/ymcegRLvgBCCQgLcou/WihwWzV3M8WY32cY1C3h3QfMKpKed
S+byTer+dqhEr+XTd1Y7b3xBw/A7H+aGYZGdMHerWbvgJY8KYHN7kxfy7jvfUet621q9n6VvLTz9
0JhYyFryKVnF1SedYvvnnzkrgA4xSTEn3U/uN9DuynKSWZtZ2MH5VsH37yxwD5S4lsUaIwsffeSU
6cxd8Sm5LnnS1vxsr3JeaVzNMreKkrujmcv5Kb1tx8nZ7cOzL6tynHTMcXJ26zCz7fO5zQIlnvn4
zTrTOTsLnu9zSkFaqnMIegC1LgCA4OgkogM0LsdmKgXV7hc4i7mE7S5p8w6IIcEQcNZpOdvjvzTv
R959ZaFHoMRz/tW8PXsOxlOU885znhfi/JCWJUIIIVpdSdmZnHHiRjAkkftfmOl8KmWpLmTVW6+S
ktPYVLnyQBrbTZMY1a/xVYPa8gy+/jzNZXkaBo6ezNhxwwjWWMhNXsRS542hhW2LVzJ66KyzflpV
W57NojnuFaOB42dx85jWv+6RMP1FoicVsvS5l8mtaFyOOiCGmS/cS5hGg0bXfsNKHsn4jtWbilzy
dzA33z+NuH6R1BZms2rBfLYaGx9dH01fTnJGIjfEN7aOKUhf6UwfQOQVk7lr+jiC9Vpqi/NY9c5c
NjbNa7UUkWuqIM6j1Q9u+8YweBjBmmKMRkiIiTxZnRK1zsDYqZMYMjQGSoysmj+f7UU1JyqdyRn8
uXlwSqPDT6dr6vBQg4++7W2IwgaP5sbJE4iO0JC14iM+W5nebAodw2+fzrikYagrjCyaM5fckhpn
nmzPKXbmSVvys73LuVpn4Ibpk0kYHAMVRrdyABZyUnKghdcBWu0s9mFbyqocJ2dwnHTwfjxemMaq
ZPfg98BxM7n5pkT8qCE3ZTlffp7sEmw+B85FXjVnNnO8opCs1Yv5pllQIDh6WOOe1kcyfHAkuU2B
I2uNie05JfRySUddgJ0tAAAgAElEQVSlKYP9LuUrfFgSYXotYW24jpzp8W+pLuTrd5a7BXy8Q2IY
N+k6DBE6jhozSF6xmqOOFlEVOXy5IJlHn55w8ld6zsc+EUKCJUIIIboUcw3Hq12eVFmqOV5T4wyW
aPSRjLt/FoacCoIjI4kyRLo1US5IXUOhS+Ai8urpTJ8+yjnNiMmzsBQ+ybL0IkCDf6CZIxXVBJ+y
stIya42JVW991qxiNJ1pk4ed0as9Gq0evwA9ao2m8Y4RUKPBLyAAf217tjk2k7s61aVSEsCfH76X
IYbGm2hNZCw3PzSLo4/OaXqa3XhzOjZ+DBogfPAk7nloMAU5RgrLNYxuqgAC+IT2I+mmRLa4vEd/
vPzUTxIH3f54K/sQ0TH2oYcZE9tUEdbHc+OsyRhnL3TerFvLiz3mCo+fwov/ndJuuecdMJhp9091
dtgYN34KA1My3fZ/33H3cut1w5rSGcvY8THkfpzuUnE88Q5FW/Kzfct5Y/6OcuZvLH+eORXjo+84
+xOwlrf1ie6Z7sO2lVU5Tlp/nHTsfoSClGRnOQIIu2I606c6yqqWuOvu4i7Keffz9HN4oen4vLLW
5PDGPXe0YsoARjo7d9XSa3QS3usc/ZlYyE3NxjLsxHWuYJNr2dSRcHVs429nfR058+P/aM6PziAw
gHdEIg++MNPZh1ivfrHEDYvlnUfnOs9TZTnfsSUvyflg4/yUXyEkWNKhJi7fKHtTdErfThopmSAu
DFodUaE6tjY9TaqryOSDR/+GX0Q0A+NjGDh4GNEx/RiS2PLsBZkmt5uvEaOb99WgZcTMJ4ix6AgO
1LcpqUfTV3LU9WIXMJhbpyedsjO888lSXUiu6URl3TsklugI9xtXTaCBQQYdpqaRGo6bMig1jyFc
Cz6BkcQMiyRm2Khmdctq9htz2Jqc49aU21pTc/Ibg4AYxiVFtzJIEUNctHuLAZ8QA8EaDZVNN+KW
mooOzz//mETCXDoU1mh0BAdowBks0RF3hfs2+YSGogZnvlhdAhxtyc/2LOfeAdHERQc02z+R+Os0
lNU48remjYGmM9uHbS2rcpx0zHFyNusoMBa6ldWR4zyDyYbE6zAsycRkOTcD33aWcwpoSLj9XkYY
TpSvYMMwYkKWs70pGFGamcrR6qTGIK25mKwMl1dwQuIZaAhsY16c+fFvTM5w6zNlxNRJHp2t+4TG
c8O4aD5Y6Xj9qoasdNNJgyWdZ58IIcESIYQQnZaeuPFjWJ252K1ZdmWRka1FRrauXglAWPRQksZP
8Ohp/2jxiZs6tUZHcKDnc2aNPpTgDki5tSKHLTklHdZM2PjjfD5aktbiu+V+EcN49t+zTp2+mgpK
XVpB1JWk8tKdqafZpkIqa8yEuz6ZNJeTk57GzowM9ucYKSw58xtYn1ADfvrW1Wo1oaH4aD0rGeoT
D1CBju8d0i800L2Sp9WgdvmmpfKm0QW6BUtoqS54FvnZnuVcExCJTwtPnn3cFtm2/D3TfdhuZfVs
jmM5Ttp1HUfLLS5lNYCw0BbKqi6U4AANppJzEyzpDOcUv56DGTt5MlfG93L/QRvK8EQD25uCDNYa
I9tNFUTFhnK8KJvcohPHftSwxDYHB8/m+C9wO/8EEB3Zcp8p4THRqFeeCA6Wmoo7/XleCAmWCCGE
6NSCYycw8/5qPl2wmrKTPGk8akxn2VvpJMe495Bfa3G/0fLRaM5hyi1sWbyckYNntfkGtsWlV5Q3
DT/qqbai+vTzW6o506qI1WKh1mIBGofFzVnzGYs+TnZ7V/0Ut+EnvzEIiGx9CxxNoOeSNFrO6a4F
NAEtVPK0pytvp0rk2ednu5Zzfcv5276Zd2b7sO1ltQ3HmRwn7boOq1tmalsuq1odfrpzeECfk3NK
CCPHjyGs6byh1mjQaDX4BAQSHGkgKvTkLUKikpLwW5nTVH4s5KTkMTY2lKMZrh3DBpDQylZH7X38
17o1NAk86b5TB4biAydeo7HUdPrzvBASLBFCCNHp9UqcwrNDJ2BMT2VjSgo5mcYWOwAsy1nN0hXx
zJzc+M6369Mwq8XC8RoLBHbcWINqTQjR0ZDb1OFsXVEqP6WMY9qYfp0uTzXNboDVATHccFMiPtpT
3I1q9EQ13ezvT/mMhR8nu7Rs0dF36DDihg1jYEwMmuJkXn/FpUXQqRZ7RnfAmk5xI6FuXVJbrS35
ea7LeTuUvjPah20tq3KcdI79COCncy2r1VTWWKB5axlzTeP3nbQ8ntX5QhfKyPHjnH0cnQn/kHji
eurYeMD1VZx+ZKWe6CjXOyKemIjA83I0++sAZ0Op8pb3KVBbXug2UpRao+v053khJFgihBCia9Dq
iU4cQ3TiGMBMqcmIMTuD7Skp5B440aS9ICMDmoIlYaE6cDZTrsBUXMGQSPc+G0qzf+TLJWn4GwwY
ekYTHR9PVOjZ9F8SwA2PPcGI0GK3juyyVixmf+Lj9NJ3rsqrWhdCsMt76Gp0DExqZR8P5mI2fpfq
rACqNQam/etp4lzy9khheatHtFCfQSXwgryJaGN+nttyfu5vBNtUVuU46VQ39MGBOjjgUlYLazxG
/6mtMFFQYem05fHcX/sCSRgdw8amzqHrKnLYkp5G7oETLTN6JSWd9ShubeV6/rFaKjCeZESn0hyT
22uj4TGhUlkUQsq/EEKIs1VbnM3q5ckUFBVy1FSI39DpPDhrFBq0BBtiGWGIJSFpGO8++HLTSBTu
nb5FDTZAZknTJwtZK9cyLn6KS1P2arJWr2GvsQiMOWxHw+in3jirSmTkFZMZGRuJhkjGjYtmoeMd
84ocVq3M4f7J8a1elgaN2wNmq8XS2Hzd5WY4ZvIzvDX57PNWow+ll0HH3qZOKesqMtmaU8gN8S7D
fJrW8vZzC7EGRBJlMDBwWCIjk+LBUk6BS38CPhHRGELc86zS1GzEFIuU55OxtDE/z2U5Px/aUlY1
53Hdcpx4ihoc6VZWt6xcQ1L8FPxPRJjIWrncbfh1AVHxYwjTZDblSw0bP1vsEngIYfgww1ldR9pD
dFIsZKac2KeLlzMyZqZbJ6+1xRmsWu06ZHQAg+INsmOFaIFSskAIIURrqHUaCtLT2Gs0UWmxULjp
M1alZLvUJ8wUZKZyxKXJtk/kife2oxLHEOnyNLYsZyVvz/mIbRnZ7M/LYM37c/kmvcj5u3fIYIZH
h55lrerEegaOm0xfl/e2TasXk1NcfWbb7vpqRY2JtSlp5KStJSu7vYZL1JMwepjLEwwLa9+Zz4bs
QizA8eI8flq4mDKLhcoSE7npKWQVNr0loNE3Nr12VPgOpLElc3/TLqkmJ2URX67IdK8DVpzi/fRz
8ET0SMYinr17Bk/ePYMn776PL1PyOlM0oE35eU7L+XnRhrIqx0nnqvQnTnArq5U5K3l3zkdkZeex
PzuNr+c+x6Jkk1z8mvEJjWZ4tM7lmnDimufXcxjRkfrzdB2BsMGj6evyyltdUSpvz57D2pQ09udl
s23NIt6ePddtePOwoROcw28LIZodt5IFQgghWleH7Me4m4bx7ueO0SdqSFnwMikLGzsArK2paNZh
YACjbhp24gYzMJ4/3z6Mdz8+MXrF0cxkPstMbmltjJg8qV2a9msC+zHupsG8+3ljs2mrxcSq5WlE
3zuqdRU4bYDbkMlQw9bP32ErEHn1/cTFtk9FN2roJEbGpJHS9NTcWmNi2SuPsKyFab0DBnPDuJjG
7dOGMCg6hFxnBbyC79+azU+6ANQ1FS2+VlBbbcZCe1Vgz4KlhkqXIS9rqzvPk+u25uf5KufntJJ9
lmVVjpNOVukPjGbc6GgWrs5xK6sLWyyr4gQ9MaPj+T4nxeMXw+hEl5Y55/46otH34+aZk3j7tRN9
79SV5PDNgpwWp/cOGcyU6aNb31mxEBeZi7JlyX2jR7D0xsu4ylfl8VtYcARfTBrBtBAvKR1CCNFM
9HUzmX7LUPdIu6WGyormgRIdSTMfZlQ/9xvA6DEz+fvMcfidsvahIeGWh7khsVe7pduQNIlBASee
BBauW852U3kr59Yy0O1ptktl6iyGHD35agK54aHHGR4dcsrJ1AHR3Pr0LHo5Ow3VMmT6XW5PExsr
kScqgH2vcH/aWGnKoVZGejzp/m5rfp6vcn7usuhsy6ocJ52trMdNfZgpJw1mBZA082GGR+hci60A
wmJGY2g20oxaE8GI+Mjzex0BwuMncP9jU4k8zShGkUPH8+C/Hm7f41OIC8xF27JEq9IxY0gUO1MO
UC7lQAghWn9zPeGfvJiYx4aVq9menUdpSQl1lsa7aL+ISKJjE0kaP5peLfbBoCU6aRpPxiSSvHI1
+/P2U1BURJ1FQ1BEJFHRgxk9acJJ5j17Gn0vRk8exs4FjieBJaxenMKIxye07uZz2GRmztSw+sc0
TAeKsKLBLySSuKGR7Z7OW194gxGpyaxNTsFoLGwcklijIywikoFJ4xg9eiT+ze5tfQJjmfn6v9m4
ZBEbM4wcLanAOyCEqOhYRo6bwJDYELa9b2TvusYm9ZUHMjCWVHt0PCraKz/PTzk/l862rMpx0tno
GTH1cYKjk9mYmoYxx0itJoDomHiGj5tAnAGWfuea+To5QQCaQAPDY0IwubxS5xM9jOhTHNPn6joC
EBV/HY++m4gxM5vczHSM2dmYiirwCzEQFW1gUOI4RgzrJbEvIU5DMWHZBntnTuC3k0a2arqJyze2
epn3jR7BuMDGOFFyWib/a6py/hYWHMFbf7iEn9Zm8GlJvZQQcc7KcEfadkRCgkIIIYQ4MxZzIZ8+
+iw7SxpfH/EOGcq/5/1TMoZq1s591q3/oYSZ/2JaUi/JGiHa6IX12Z0mLRdty5KyY4VsJoRrBvdm
XXE222saTjG1goTeBqYNCKGPXsuRygpWZuxj5ZHGEcr/8ccRDKg08WDqESyAXhfMa9cNhMK97t/9
sT/bUjP46EgtYSGh3Bd/CUMCvTGbzewuKWVxhomdp0yHEEIIIYQQbVeQMp93FmbgExJKeGQkYZEx
jLppjNuwt9aaYkpdhg7WhPaTjAOOF2aw1iVQotYYGD44VDJGiAvMRTsajtlSz/LtJspUfsyID+NU
DSwvHzSQ54dEoq0p5z+bd7O+XMmMq+KYFt7YHdK24loCAwIJa8rNwIBAejT93/FdWHAwYdSyubwO
jZc/jyT2JbCmlH+tz+aNzAK0wWE8MiIKaRAthBBCCCE6mk9ICFZLDWVFJnLTU0lZuZCvV6c5+2k5
XpjHqnc+chs5JWrwxTrErJkjpv0cKS5mf/ZGls5dSJnLr8FDRxMdKHfxQlxoLurRcMoqSngvO4Tn
4wxMjijno6Jaj2n0ukAmRwewe99untp+rHGIzEPllKnimBwfxeo1RvYcrABDGAN0GgqqLPSO9MNc
VwfeenrrVBRU2eh/iS9lpcXk19sJCtYTpbKyeHcBm0stQDn5lVbGhYBGCdikYAohhBBCiI7jFz2K
gSHJzldsAHYumcvsJSepNOgMJCVGX5yZZa4gef7LLqPZuApg9IRh0v+HEBcg5cW9+Xa2G/eRXGnj
miG96K9ReEyh9wukh8rGpoNVnIirN7DzYBVanS9R3irKKkopaFAzpJsXGqUXQ7pp2JlXREGDliGB
Xmg03lwR7E1+YQXVQFllJfkWNdOS4ngyoSdXhftSXVrMp3uKKZdAiegAGqVCMkEIIYQQJ+4NtJHc
/PD0046a0jhxCGPvn0VM6EXaekKrw1/fcj4Nuv1eEgyBUqCEuACpL/ocsNWzOO0gQ/7QmxmDgpl3
0D1+pPfWokXN/xs1lP/nMbOVHt5KttfUsqnCzOhIPUHFFgZ42fjuSDnhkVEkhPsQVKOlt8bMp4cb
O4y1WKr492/ZTIs3cFWfHlzRpwc0mFmdYeTD/HIsUi5FO/NSKbHYpD8cIYQQQpzgbxjJg2/3Y3vy
j2xJz6DAVNQ0uhmAhqAIA9HxiYwan0TURf2aiR5DtAFvUw51FgtqnY4wQwyjxk8iIV5GlRHiQiXB
EuBo6WE+3BfCo316M6HafdQQc50ZM2ZWbjayrtLsMW9ZZeMVZefBaibFBtM/1ILeVsuemjqOltQy
NjKIhHovNHVV7Kw5EQaprjnOe6lZvIeC3iFBjI/tybgh/TlSmcEKGYVHtDMftYoqiwRLhBBCCOFO
ow9lxIRpjJggeXEqcVOf4N9TJR+EuJgoJQsA7GzeuZdtdWrGxYXh65It5ZXHOdqgJsrbRn5FjfNf
YGh3psV2J0jV+HrD0eISqjV6JvQOpLq8nEMWOwWHK8EvmAkGP44eOUZZ0ys2vSN68cGf4kjwUgF2
8ktK+XRbAWWo6eEtu0S0Pz+txEWFEEIIIYQQorWkZt7EYqnhw22FVDX7vrqmjEWmaq6Ij+XlxD5c
06MbNw3uzyPx3QlsqOaoxQ5AeU0Ve+qUDOim5VBhJRagrLKcow1KenjD9sITfZ4crSinWqnngaui
uSYikISIUGYMM6A3V7Ou1Cw7Q7S7QG+tHOxCCCGEEEII0UpSf3JRUFTA4sLmvVzbWb99J//KOIo+
IJgHLh/AFIMv23fn8ULaEaodk9nq2XSkHrCyrbSpb5L6anZWWjGbq9nkEgSprinn3xvy2N3gw30j
Y3n+8t5E2Y4zb0Mu22vkVQnRMcL0XpIJQgghhBBCCNEKignLNtg7cwK/nTSyVdNNXL5R9qbo0mW4
o1ltNnYWH5eRqYUQQgghhBCd0gvrsztNWqRliRAXCbVSSa8AnWSEEEIIIYQQQpyGBEuEuIgEemsJ
9dFKRgghhBBCCCHEKUiwRIiLzCX+OoK9NZIRQgghhBBCCHESEiwR4iLUK0AvLUyEEEIIIYQQ4iQk
WCLEReoSfx19AnRyEhBCCCGEEEKIZqSeJMRFLNBby6BQf7rrveRkIIQQQgghhBBN1JIFQlzkJwGl
kkhfHyJ9fSirM1NltlJjaaDBbqeuQQYaFkIIIYQQQlyE9STJAiGEQ5C3liBv6ctECCGEEEIIcXG7
YIIl304aKXtTCCGEEEIIIYQQbSbdFAghhBBCCCGEEEK4kGCJEEIIIYQQQgghhAsJlgghhBBCCCGE
EEK4kGCJEEIIIYQQQgghhAsJlgghhBBCCCGEEEK4kGCJEEIIIYQQQgghhAsJlgghhBBCCCGEEEK4
kGCJEEIIIYQQQgghhAsJlgghuhy73e78f0t/n27etsx/LrbtZOlrr/w4m3Wcq33Y3vtbCCGEEEKI
s6GWLBBCdHZ2ux2FQoHNZsNms6FQKFAoFCiVJ+K9CoWi1ctTKBTOZbouv6PS61inSqVyVvBPtj7X
70/298nmOdPpXf9uaGhwpk2lUgFgs9mc26JUKlEoFFitVpRKJUql0iPfHJ/tdrtzXsc6HPM7pmlN
ml2Xdybb13wZjuldy4+j7DTfT45tP9MyJYQQQpzt/ULz4H/z+5T2Wv7J/j7Vb2ealjPZppNN29p7
uNZuy6nW15r1tyY/TpamlvLtdOk/U3K/IsGSLqW+qpQqbTDdtJIXQrQHx0XAUUl3cFTwVSqVs7Lr
mM7xu6Ni3Px3R8W/vr4eHx8fGhoa3IIArvM6luVa4bfZbM7PJwtaNE+vozWE67yO7xzboVAoaGho
cEunIz3N53FM4/qb1WpFrVY7l+G6/S2twxHAcQ0SODT/zm63o1arPS70zbfbERhqzpFOq9Xqtu6G
hgbUarUzjY58cyzfkX7HP8e0ruu02WweQR7HtjrS67o/XNPf0n5qvoz2DqgJIYQQrtdNx72B6/1C
8wq/YxrHby397Tq962+Ozw6u19Hm63JNi+u12XV5ze+HXNPnej1t/pvj/srxr6V5XB+suH5ufv/k
mt7m+eTKdR2Oe5FTBRsc87d0z9B8GtdlNN+HrtvTfJrm2+2aX83z1XVZjnsduS85N+Q1nNM4ZvyB
W25+yO3vvCrzSaepNx/kxVlPsP5AaYvLK8r+hltufub8btOBVB698zZGjbmeW2a+yLqTpNVV3m8L
uGvWAvfvtn7Dfbc1LudPN9/Pgt9yT5uHnWE/tnYfnGx/d5b9eDFxVOx/++03nnjiCZ577jmWLVvG
vn37WLJkifPi4fjnuMCq1Wq3YIDjH0BpaSkPPPAAKSkpKJVK1Gq1W2sJx7yOi5vr767TO353vWA5
LqB79uxh9uzZPP3006SmpjoDF67zKpVKVCoVarXaGcRwpPOVV17h6NGjbut3ncexrY7fjh07xsKF
C53fNd/+ltbx0ksvcfz4cebNm8dTTz3Ff//7XwDMZjP//e9/efbZZ/niiy8wm80oFApee+01cnJy
3IJRzbe7qqqKN998k2eeeYbZs2fzr3/9i9LSUrf0OtKyb98+Fi1a5AywuOazoxXI1q1bUSqV1NfX
89///tc5rUqlcgY6XIM4rtvqupxdu3bxzDPP8OuvvzoDSwqFgs2bN/Pss8/y5ptvUlVV5QzkuC5D
bkiEEEK0N0cl2FGBt9ls1NXVOe8XXB8eOK59jt9O9rfrgxzH5+PHjzuv466tcx3Tuq7LMZ/dbqes
rMy5fNf7j+YPR5qnz/GbUqmkrq7O2SrV8WCjeQDFZrNRXl5OeXm5W2vUY8eOuX1u/gBDoVBQXl7u
kU/N866lNLreu9lsNioqKqirq6OkpMQ5b0lJiTPfXAM2rnnr+qBNqVRSVVXl1gq6eV477ssc8zju
OxzTOfLANZ2O+VUqFVarlYqKCo8gl+gYqgF/vev5zpzAKbGXnN8M0vozYMClRESFUFuax/fJ+7jm
xmvpplW1OE1DbQnfL/2N3mPGMjDYx2N5VcW5rP69iJv/es352SDzEeY9+Sq1Q6bw76fuIuDIVj74
NJ3EsYkEalUtzFDFukXv8PS8HzEHDGTy+GEAVB5O5enHPmHAtPv595P3EBd6nC/nf4F2eJLHdrvm
T2fYj63dByfb351iP16EwRKVSsUnn3xCjx49mDFjBv369XNerHr27ElKSgo7d+6kqqqK8PBwqqqq
WLp0KQ0NDURGRpKRkUFubi6ZmZkMHDiQN954g3379nHrrbeyZ88e1q1bR0hICH5+fpjNZlasWMG+
ffsYMGAAx44dY9myZWg0GsLCwtizZw/Lly/HbrcTFRXlfOriCOo4Lv7Jycnk5+dz33338cADD3Dz
zTezd+9efv75Z9RqNaGhoezevZvc3FzS0tLo06cPGo2GjRs3kpmZSVpaGtdeey1ms5mvvvrKuf5d
u3aRlZXF/v37CQsLY/ny5XTv3h0/Pz+sVisajYYVK1aQl5dHSUkJvXv35rfffmPr1q0MGDAAtVrN
+vXrycrKYtu2bVx11VXMmzeP559/nsWLFwPw7bffAnDjjTdy7NgxDAYDx44d4+9//zu+vr5cffXV
zpsB15Y4js89e/bEZDJx+PBhJk+ezN69e8nLy0On0/H777+Tn59P3759na1K9Ho9GRkZbN68GZ1O
R1BQEDabjerqambMmEFJSQk9evTAz8+PoKAgduzYQVpaGjqdjoMHD7Jp0yYGDhyIQqFg/fr1bNiw
gYEDBzpvyCorK3nssce4/fbbWbhwIf379yc0NBS73U5hYSGDBg1i9+7d/P7771xzzTWsXr2adevW
0aNHD/R6vXNbhRBCiPbiuF9ISUlh165dbNq0idjYWBQKBRkZGdTW1lJYWIhKpUKn05Genk5ISAjH
jh1j7969hIeHk5+fj9FoJDw8nIMHD3L48GG6deuGQqFg//795Ofns3PnTkpLSwkMDKS6uhqz2Ux+
fj61tbW8//77REREOB9ghIaGkp2djclkoqamhrq6OnJycrjkkks4fPgw2dnZ+Pr64u3tjd1uZ9Om
TQQEBFBbW8v27dvR6XTodDp27NjB119/jdlsJjk5maCgIIKDg9m1axcAvr6+KBQKTCYT3377LSUl
JajVajQaDdu3b0er1VJQUMCqVasoKioiMDCQvLw8goODUalUlJaWsnr1aoxGI0FBQRw6dAi1Ws3b
b79N3759KSoqoqamBr1eT1ZWljPgk5ubi1qtZt68efTp0wd/f382bNhASUkJv//+Oxs3bqS0tJTs
7GzS09Opr68nNDSUWbNmcdVVV6HT6VAoFOzcuROr1UppaSnl5eUEBQWxfft2vv32W0JDQ9FoNBw/
fty532w2GxqNhp07dxIZGcmhQ4f4+uuvqayspE+fPtTX15OWlsZPP/1E//79ycnJITg4mHfffdcZ
PDGZTISEhLB06VL69euHRqO5IB/oLM452GnScvG9hmMuZel/3uKTn9KpQk/s8DE8/Nid9PPVYsr4
gXc+/IYdOYfwDY/jnsceZoQ+nVdf+4UlS99yW0x91V7m/vNZDvS9jSdvwjnNJ8+9xI6yo+yYNYuq
V+dyW3z4KZNTlL2WufM+ZsveowRfEsc9Dz7MdU3z7PrtK9758FuMR8pAH8Y1k2fy8JREqow/8OBz
a4m+pIz1GdX8ddZ4Ur7Yzoh4Leu35lJl1nPVtPt5eNIwvJqvz5jKjqpLeHnaGAy+WrrPuIcdW5/g
u5wyZg33TGvya8/wwd4gbr0pju8yXLOxiug/3MYd4xPpBnQbO5GrVqxhx8EyJkYHuwcWDrvk4Sny
v7mTbf93T9zD+p53Mu9vic7AzYOzvuCO+a8SnPNDy3l2uOX9eKr1NG5oNcv+8xLrf0uH4D7c+reH
uO3Kvme0H0X78ff3JzMzEy8vLy699FLsdjtr167Fx8eHhQsXMnbsWF555RW+//57nn76aeLj43nj
jTd46qmnePXVVxkyZAj79u1DrVYTGRnJgQMHUKvVVFRUsGPHDlasWMEnn3zCCy+8QGhoKP369aOo
qIjnnnuO4cOH8+qrrzJz5kzee+89brzxRueNjusTBtfvfHx8UCgUFBQU0Lt3b1QqFdXV1ezdu5f/
+7//47PPPuOjjz7CYrHg7+/P4cOHGTVqFPPnz2fixIlkZWWhVCr55z//SWJiIi+++CJz5sxhzpw5
xMTEcOTIEcVt9jYAACAASURBVBYvXsyIESN48cUXef755/nqq6945plniIqKYsGCBYwYMYLa2lp+
+uknoqKimDNnDmPHjuX999/nT3/6E1lZWeh0OvR6PcePH0epVGIymSgsLGT+/PkAxMTEAPDJJ5/w
3nvvsX79esrLywkICGjxNRaVSoXBYKBPnz5otVp8fX257777eOmll7DZbBQXF7N69WoOHTrE1Vdf
zc8//4xSqeSRRx7hnnvu4amnnmLhwoVotVpUKhXBwcGEhoZiNpv5+uuv6dGjB/fddx+PPvood9xx
B7fffjupqanodDpUKhXLly9n4MCBPP7447z55psolUrnDVZiYiIbN24kPT2dgQMH0tDQwOWXXw5A
eno6FouFlJQUvvjiC6ZOnUpNTY1b81cJmAghhGgvjutLbW0tL774IitXriQ/P5+SkhI2btyIRqNB
p9PRvXt3SktL2b17Nzt27OCyyy7j//7v/7j++uvJycnBx8eHwsJCdu/ezeDBgxk4cCAFBQUsXryY
CRMm4OXl5ZzOarWSl5dHfn4+N954I1arlaqqKj7++GMABg8eTF5eHldffTWFhYXs27cPHx8fDh48
SG1tLbW1tRiNRqZMmcKSJUuwWq3s3buX48ePY7PZyM7O5q677qK+vh5obDFRUlLCunXr2Lp1K9u3
b8fLy4vZs2dz7NgxfvjhB7RaLeXl5RiNRjZt2oRKpSItLY2BAwdSXl5O//79Wb58OXq9npiYGMxm
M4sXL8bf3x+73c6+fftYunQpo0ePRqPRoFQq2bhxI7m5uYwZM4Z169Yxbdo0PvjgA2pra+nVqxca
jQYvr8aaUk5ODhMnTmTDhg34+PiQmZlJeHg499xzDwA//fQTYWFhbN68GYPBQF1dHStWrOCKK67g
999/JyAggIiICHx9fVEqlaxfv57LL7+cgwcPUlBQgLe3Nz169OD111+nrq6O9PR0vL29qa2tpbq6
GoAlS5ag1WqdrVuWLFlCbGwsNpsNHx8fdu/ezVdffcXf//5354O7hIQEaVnSwS6613BMW7/gy60a
3l76Dau+eJXoslQ+WJlJ5eFUXnz2Y3xH3san33zOwzfoeeflueTXWj2WUVV1kHeefIkDl9zMa49d
j97ltzteeIbLgsJ4eP780wZKKkszefG5D/AdfhuLv/qY+28I54NnX2Lz4SqOHVjLq2//wDWPzeWX
NT/wn8dGseXTBaw/0NhUq+pIFlXRt/Hpx3MZ29ufqiNZHL7kej78Yikf/vtGdnz6AVsOV3mm/cg+
CO5BcFNwwss3iJ7BGkpLy1pM44gZL7FkwbOMiAly+75b7LU8+eD1dHNsy4Hd7Dis4bJLgs4q/5s7
1faPGB/H4a1rKWp6O8a44RfMPZMwmNNPmWctOV0+m6sPYTT34e2PP+bZyQNY9vJLJDdb3qn2o2j/
JzCRkZEMGDCA8PDG4yswMJCNGzcydepUpkyZwhVXXMGuXbvYuXMnDQ0N6PV6ioqK6NmzJ7NmzeLO
O+/EZDIRFxfH1VdfTWRkJMnJyc4LUkZGBpWVlTzyyCNMnDiRAwcOkJubS0NDAxqNBoDRo0eTn5/v
fE1DqVRSWFjIm2++6XytB0CtVpOfn8/ixYuJjIzEy8uLNWvWEBUVRUhICHv27KF79+7ceeedPPTQ
Q5SXl/Pbb79x0003MXnyZAYPHsy2bdtQq9XcddddJCUl8fvvv9OvXz/uv/9+Jk2aRO/evZkxYwYK
hYKKigo0Gg2hoaFERUXRp08fHn30UecFGMBqtfLDDz8wZcoUpkyZQq9evWhoaKC2tpYvv/ySa665
hr/85S9UVlZ65P+PP/5IQ0MDRqORjRs3OgMHubm5vP7662RmZjr3k91ux2w2Y7Vaqays5Prrr2f0
6NHs3buXAwcOMHLkSHbu3OkMKjU0NDB27FimTp2Kv7+/sxmqTqcjOjqayZMn06NHDzQaDVarlauu
uorJkyfTr18/Jk6cyIwZM9i/fz9r1qxBpVI5t8kRuHJ999f1XWHHd6mpqaxdu5Z77rmHPn36YDAY
yM/Px8/Pz7n9EigRQpyLinNHjPx1vkdAE6fW0NDAn//8Z1auXElFRQU2m40rr7ySQYMG8Yc//AGL
xUJ5eTnR0dHExsaSlpZGQEAAubm59OvXj3HjxlFRUcHll1/O2rVrqampcfbzFRAQQF1dHXq9ntzc
XH7//Xd69+6NwWBgw4YNGAwG5/1BXFwcQUFBJCQkMGDAAI4ePUrv3r25/vrrOXz4MN7e3kRERDhb
0tbU1ODv709dXR1eXl7cdNNNzt9CQkIICAigoaGBa6+9lsjISIqLi+nWrRtDhw5FrVY7AypeXl7U
1dVRU1ODQqGgR48e2O12amtriYyMRKVScfnll7Nr1y5MJhNKpRKz2Yyvry9lZWUYjUa8vLwoLi7G
YDBw6NAhjh49SnV1NYGBgfTu3ZuffvoJhUJB//79iY+Px9fX1/kKr6M/tYaGBm644QYefPBBSkpK
SEtLIyMjg19//RWDwcCvv/5KfX09NpuNhIQEZyvnQYMGoVar8fLywmq14uPjw5YtW9i1axdmsxmd
TufcxtjYWHr27OnsM6+urs4ZMNPrG2uVmzdvxsfHh4KCAqKiomhoaCAnJwdvb28OHjzo8ZBKdJyL
rmWJ1tcXc2k63/20lglXJvLP+Z8AsOunVyntnsRrk0bRTQsRUx6m+/AyvMhyX4C5jE+ee5YDXMGH
j92IH3DsLNNyYOsPHA6+gpenXdu4zkl3kP3zLL7beohXxg7ltQVxRHQPpr6qFLM2HF+thdIqM2gB
TQ/+ctNQIoJ9OVYFWn0fJowdip8WtD3j6Kn9hgOl1dDd1z1YUloG2h6caMehJVgLxtKWK/Z+wb6n
3Y7K0lxefe4dgv8/e28eJlV55v1/zlKnlq7qlaa7ge4GbHaaVdAGFHFFFOOr0UR9YzRjSMZXnUTH
aEaj15tkruhMxCRuiToTk180Jpq8LtG4xH1hE0RRNhuQnQZ6raqu7Sy/P6qew1OnqxtI3GDqvq6+
uqrO9mznnOf+Pt/7ey+8ivkeVsmhtr/Xqmr7r3/t5NNoiN3Gm60dXNAEb766mfHnXUJDbc3AbXaY
18HItutVV17CqEoDFl7O/BdW8txbmxk/+dD68biFY4tPmU/Q4vE4DQ0NzJgxA4AtW7YQi8UYP348
L730EkOHDqW1tZW6ujpGjBjBnDlzOPnkkxk6dCh/+MMf3MmGZVl0dXURi8XYtm0bGzZs4Nprr+WX
v/wlZWVl2LbNkiVLGDZsGKWlpRxzzDHMnTuXU045hYqKCoYPH87q1au54YYbeOaZZ9A0jXA4zOzZ
s6mtrXUnoD09PUyZMoVbb72Vyy+/nBdeeIHly5dz11138fTTTxOLxbAsi1QqRXd3N/F4nClTpvDi
iy8yZcoUVq1axfXXX097ezsbN27k3Xff5Wtf+xrr168nkUjQ09PjrhKl02nS6TS2bbNp0ya++93v
cscddxCNRhk9ejRlZWWcccYZGIbBa6+9xhtvvMHo0aNZv349juPg9/v58Y9/7E6gS0pKePjhhzn5
5JPZunUru3fvRtd1Nm3aRENDA08++SRnnnkmjuNQVVXFnDlzGDx4cB6wkE6nSSQS7oTHsiyeeuop
pk6dSlVVFUuXLsVxHOLxOKZpun8C5JDbceXKlYwYMYJEIuFOaIRQrGmadHV1kclkGD16NPv27ePs
s8/m7LPPdsOCjjnmGNra2tiwYQPvv/8+1157LevWraO2tpbNmzdz66238rOf/Yx0Oo3f72fRokXc
cccd3Hfffdx0002uvkkRMCla0Yp2uACF0IoqlEWsv2MEyCsLdYpzCRBYFs+Uj+/v/LKOQn+ASVGn
6bM1ERoyZcoUTjnlFLZv305dXR2GYbh6HYFAgEgkQmVlJW+//TbDhw+nvr6e1tZWRo4c6c5B5s6d
y969e7nooovw+/3U19dzzjnnsHnzZqZNm0YkEmHt2rUMHTqUhoYGMpkMY8eOpbOzE8uyuPrqq2lt
bWX8+PEuEHHaaafh8/kIBAJ85Stf4cMPP+Shhx5yGRcXXXQRL7/8MmeffTaO4xAMBjn99NNxHIfG
xkb27NlDRUUFQ4YMIRqNcsIJJ7B69WpKSkpQFMWdq7W1tTF27Fh0XWfnzp3cc889LFy4kGOPzYb/
C1bweeedR319PT6fj/PPP58PPviACy64gHQ6TWNjI1OmTGHLli2EQiHmz59PMplkyJAhxGIxJkyY
gKqqrFy5kvHjx6NpGnv27KGsrIypU6eyceNGLrzwQurr69E0ja9//eusXr2auro6vv3tbzNixAi3
zVVVpby8nGOOOYaLL76YdDrN2WefzZtvvsnxxx/PlClTWLJkCWPGjOHYY4/lpZdeoqOjg+uvv54V
K1YwZ84cduzYwebNm5k+fToAl1xyCW+99Rbz58+ntraWNWvW0NjYiK7r7Nq1i/nz5zNmzBjGjx/P
66+/zty5c4v3ahEs+eStbvIl/Pg7JTz06ENccd+dhOubuer6a6nc3okRHsuBaJAwo5rCtLfmgyXp
+F62pUfCnpUs39bBmQcBB/7640Xc9uqO7BlrTuTBmw44zx3bO+nY9DrnLfhr3jFTtncCg1n+57t5
6OmVxIwKmppqiKXTpMnkQIcKKg0JATB8B8puGBgG5HbNs3C4BNKdHJAsTdORhnBtxd/Vnu2tS/jh
rXcTnreIW65o6RP2c6jtf+Z4Lwsn3W/9/eGRnDwjzFOvbuDkcJrVe2q4anI9EBuwzQpb+iDtPJgD
eJFBQ02Y1W35LJyB+7FoA00IvUriA+1rWRbTpk3j2WefZcOGDYwdO5ZZs2axb98+TjvtNLZs2cIL
L7yAYRg0NDTw7W9/m9/97ncEAgGuvPJKWlpaUBTFBTPq6upIp9MMGzaME088kXvuuYdzzjmHmpoa
vvOd7/CrX/2K2tparr32Wi699FL++7//m8rKSi666CIee+wxotEo//Zv/+YKhUYiEY4//ngAMpns
+GlsbHQz7lxxxRXs3buXRYsWceedd3LsscfS2NhIOp2moqKCkpISmpqaOP3001mzZg2PP/64Oym4
+uqrueeeezj++OOZM2eOu4IyZMgQ90U5Y8YMSkpKmD17Ntu2baOhoYFHH32UiRMncvXVV3Pvvfdy
7733ctJJJ3HhhReyfft2Hn/8cb761a+iqiqzZs2iu7ubYDCIqqr86Ec/4v777+f22293X+S33HIL
M2fOBODOO+8kGo1SUlJCdXU11dXV7uqY+D9ixAjKysooKytj8uQswnjVVVdx9913M2jQIL70pS8R
CARobm6mqqqKiRMnoigKLS0t+P1+d3xcdNFF/P73v+fSSy+lpaWFUCjE9OnT3XobhsGQIUNIpVLM
nz+fu+66i3vvvZeWlhYaGxuxbZuKigquueYa7rvvPubPn09zczMPPPAAJ554ImvWrGHkyJE88sgj
zJkzh+HDh3P//fczYsQIl6IsHI2DmTelddGKVrT/uSYDHbJguDebWH//C6U8BQZ8xhTK6iGLkQuA
WYhHFsq4UbTPfowMGzYMgNGjR7vbhgwZ4n6uqMjO00899VT3N3GMsLKyMpclIvpz4sSJefuIeYp8
vGDqAgwdOjRvf8F0EBaNRrnuuuvcd3owGOSss87K26e8vNzNnjd79uy8371lAGhubqa5udn9rqoq
V199Nc3NzS7zQ24LYQ0NDTQ0NLjfhw8fntdWssnHn3766QBMmzbNbadJkyZlHWNdd++Duro66urq
8s7T1NTkfha6a1OnTnV/O+mkk9zP8+bN63NN+fPo0aPz+jscDnPGGWcUPFd9fVbDc8SIEQCcc845
rmZM0YpgySdq0T3bCY87lZ//+kJSsTaeuvdH3P/zP/If51WQXrGdWBr8BpDu4K9/ep2yMfkvJKNi
DLfc8QO2PXgLD/38MWbe8a0Brzfnyh/x20tz0IRRAh2vu9sqa0qoHXcBD951OYLoHe1og3AFH76y
mPvfyvDjXz/M1NowqY73ufLy2we81qFkKg7X1kDHZjpiaarCBql0J9s6YPwhMEi8tvW9J7j5lseY
eeUPWHTG2IMCJQO1/5m/ujpvvw9fuX+A+htMOeNEHvnZi7xsxGHyXMZXGnz4/P2H3WYDXwfSsb3s
iUFjZQ5Y6oxROa4C6DykfizawBOEQullC5nY75xzzuGcc87J2zZmzBj3BbJlyxbmzZuHz+fj+OOP
z3shX3755UA2Fle8FMXL+bvfzc/WVFVVxZ133pn3wpNfetdff33B8gkT4TpyGeQJg/wyFHogchlv
uOGGvPOdeOKJnHjiie73b3zjGwBMnTrVfUn/0z/9U94LVS4vwPe+972879///vfzvv/Lv/xL3vfK
ykpuvPHGfvvE22ZyW4j2aGlpcX8fOXKk20933HFH3jFigjN2bBZM/ta38p+rc+bMYc6cOQDuKpNo
qyuuuMKdHIn+vO666wo/j6XzAHzzm990x9Bll12Wt+/ixYuLN2nRila0f8jkNKv33XcfX/nKV1i3
bh2zZs0iHo+7jqgMkCSTSTRN44UXXqC0tNRlEQi2nmEYvPHGG2zcuJHq6mrOPPNMfD4fmUyGWCzG
6tWr3bANkV0sHo9j2zbLli1j0qRJ7Nu3jwkTJhCNRolEIm4GllAoVBBwKdqnO0YEaOVl9chsIu9+
XgDNm2JXzvIizqNpGuvWreOtt95i+PDhnHrqqfT29hIKhdysLOFwmBdffJHp06dTUVGRl0Gnu7sb
wzBoampi2bJl+Hw+Jk+eTFdXF5WVlTiO4wqqKopCKpVC13VM08Tv97vlEOcUgJ0Imy0tLXUXN9as
WUM6nXaBRtM0MQyDeDzOq6++yrRp0xg8eLArmgpZFuqWLVtob2+nqamJd999l1NOOYVwOOyyQ8W5
VFXlmWeeobm5meHDh9Pa2kp3dzeBQIDJkyeTSCTcEGFN01z2bjgcJpFIEAgEiMVirrB+LBajvLyc
rq4uQqEQPp8vT9PO228DpWGWUyp770WxvwBKivdqESz5xG3bisf43m87ufEn1zKzqYTKcAlGuIba
ySOpvfdO7v/TJBYtbKb1lYd46C+dXD9xRl9Qwghz8hVX8dy3fsDdz8/lqnF5GwkbGVq37yXaUEmk
soaIRD7ZLWXpbZixgPCDd3L3n0Zy2RnTia37Gzff8jBzfriYOR1xDKOEsGGQSnfw3G9/TWs8xszM
IaIi/VjduAWMN67l/gf/xlWXNrP60ftpDU9i0TFZx/6j994hXTOWCbXhg4Ae73DbLQ8z/oob+PKM
wcQ6OogBRriSiHH47e+19ED1ByrHtdDEkzz0pzTn/PBa/Ac7pp8yHeyYdHw7z721nuMWTuKjFX/j
uW1hFl0/Ejo2H1I/Xj2jvviU6cc6OztZvny5m0JNBlEKfRYv/f4mcu+88w6ZTIaTTjqJl19+2WU4
iBeV9+UkXkyqqrqZXMRLWY7pFi8577nkycdAkyDIsiymT59OeXk5b731lpsWsNDESEwc5PJ4Jzti
JVB+0coUb/lc8oRJtJ1M45brKKcblF/a8rnk83nrLk/aMpkMU6ZMccNt4vE4uq7n1cXbBvJkUF45
9U44Cv330t0LrcAWqnN/E0zvJKa/MSn/bpomtbW1fVbyila0T9Kx8jpZhcZwcRL9xeovkTEkEAhg
GAaWZbFq1SpXM+rYY49l1apVAKxatYqWlhYSiQRvvfUWEyZMoLy8nMbGRrZv3878+fN577333JCN
P/zhDziOw/bt2xkxYgQffvghFRUVPPvss1RWVjJp0iRWr17N9OnTeeKJJ9xn39atW1m/fj0tLS28
++679PT0cNZZZ9Hc3Ow6iEX79M37rurvfSM+D9Qvhe55OeQqFovx+OOP8+1vfxtN03jppZd46aWX
mD17Nh0dHWzbto2Wlhaef/55fD4fy5YtY9y4cezbtw9N0xg1ahSpVIolS5awbt06xo4dy6uvvsrM
mTPdBaEnn3yS9vZ25s2bxxNPPMHxxx/PihUrKC8vZ9GiRcTjce666y4ikQiKolBXV8dpp53GL37x
C0488UT27dtHV1cXtm2zZ88eRowYwapVq0gkEsyaNYv169ezYcMGpkyZQiaT4aWXXmL79u3U1ta6
IMLzzz/Paaedxvvvv8/69es57bTTmDp1Ki+//DL79++no6PDzYD3zjvvMGvWLMrKynjppZcoLy8n
Go3y/PPPM27cOC6++GJ27tzJY489xowZM9i4cSOO4xAOh2lra2PSpEksX77cFcNta2vj0ksvxefz
5TFNC/Wbt7+8i4jeY/qbxxYBziJY8onahDMWsWjTndx29eXEMj6aJs/lxusXEKkNc+MPL2Hxz+7n
vP/qpLJ+OlfddBUjjJUFz+OvHMuiK1r43r2/4t1/O+HA70YNc2YMY/G/30D6psV8f94x/ZYlUnss
t/zwMhb/7Nd89b7bMUoGM/+KG1g0ox7GXcacd27nigvPJVwxjDnnXcA54x5mz7ZOGPcPNIBRw1U3
LeK2//w1l154N5X1zVx102U05mJ4HvmP20mf9wP+/fxJA55m9Z8fZm08ztqf38JzPz/w+5x/vm3A
Y/trf6+NXzhA/SfX4DfqOXn2MJY/b3ByTnx2wGP6abODHROuGAkrfs1XHt1LmsFc9r0bOKE2nAd6
DdiPRevX1q5dyzPPPMMpp5zi0jVt23Z1LkS6ukQiQTqdJpPJYJqmK1gmnHnxWayIPf7443nbLcvq
s6/4Lv8u9i30WU4NLH7vL4xIOOviuiLu+I9//CPHHnssd9xxB4FAAF3X3T+fz4emaRiG4X4W32Vn
XThCQthLFviSwQwZCPKW01sn+VgZJBH1FHWRv5umSSaTIZPJkEwmicfj9Pb2Eo1GSafT6LrO7t27
+a//+i/mzp3LPffcg2EYrs5KKpUik8n0WTURdZXrWQisKTSBLLTSVmhSIrbLtHOv8KH3N9FWQitF
bgtN09zUx2Iyd/vtt39mq5GflPhj0T5fZ6m/UIxCfdvffXA0TJy9K+lH+tgWz+FkMsns2bOxbZvl
y5fT3t7OrFmzWLZsGU1NTfz0pz/l/PPP5+mnn2bixInE472Aw+jRo/nSl77Ea6+9xv0PPMCNOdah
qqoYhkEkEmHp0qVEo1HGjx+Pqqqceuqp7Nq1i87OThobG3nppZeYP38+M2bM4L333mPChAk8+uij
OI7DvHnzePrpp2lqGsXs2bNZvXo1EyZMODpSpSsKCl9MDZbPepzLCxG2bRMKhdB1nRdffJH6YcNI
pVJEo1EuuOAC3nzzTaZNm8bYsWP56KOPGDZsGD09PVRVVbFixQr8fj+lpaXMnDmT9vZ2Ro4cyXvv
vUdLSwtbt25l3759bN26lWAwyEknncSuXbvIZDIue6Wnp4eGhgZqamrQdZ2Ojg6ef/55NE3jtdde
o66uji9/+cs88MADfPTRR4wePZq1a9fS0tLiZpgRc4khQ4bw/vvv09XVxXvvvce5557L3r17mTZt
GpMmTWLXrl0cd9xxLF++nClTpqDrOn/7298Ih8P4/X6GDh1Kc3MzS5cupbu7i9raWk488USefPJJ
qqqq3DnTe++9R1lZGbNmzWLFihUsWLCAZ599ljlz5vD6668zevRo3n33XaZNm8ZHH33Epk2bmDhx
4iGHmv9DgHlurA80/ynaP/goOefxt77Qb6Inz59V7KWiFe0otGXLlrFx40a++tWv4jiOm+UkmUwS
jUbp6uoiHo8Tj8dJJBKkUilXANQLWAhHVmhLeB1+LwAiAybiT3aECwEEtm2TyWRcsEA+j9dhsSzL
FVsNBALs3r2b++67j8mTJ/PNb36TqqoqDMPA7/fj9/vx+XwYhkEwGMwDUvx+f15YiwwgCKBE3i6D
DvJETNRRvPgF8CNerIIKK+/vBUdkUVUBkogUgt3d3XR1ddHZ2UksFnPTJS9evJiWlhauu+46ampq
6Onpoauri2Qy6balDIwIyrgXABrIQfS2vQy6eJlIsriil4XjBUbk/hXtJQAi0RbpdBpVVfH5fEQi
EXp7exk/fjw33XRT8QYv2qfu/Hz88cfU1NQQDAbJZDLs3r3b1SsoTpq/ePbqa68zdepUHnroIS65
5BIef/xxJk+eTMvxx/Ef//lTvnf9v7Lq3dVs3LiRWbNm0dnZ6b7/qqureeKJJ7jlBze752ptbaWy
spL58+ezdOlSenq6Ofnkk/nLX/7C8ccfz+p3V1M9uJrRo0fz1FNPc9JJJ7Fly2ZUVWPIkKxm19Kl
Szn99DOIxaLU1tSyc9cupk6ZfDTdKUDxPpBt3QcfsHTZMsaMGcPQoUN54403OGHOHNo7OhgxYgQ7
d+ygM/eerh40iMlTpvCnxx/H8PuZNGkSqWSStr173XCytrY2oj09/K8vf5lEPM6zzzyDZVmMHjOG
iooKqqqqeOqppxg7ZgzTZswgHouyadMmIpEIuq7T1dWNaZqsWfM+Q4cOpbKykjFjxrJ58yZ33icW
YmbNmsXzz79APB7nwgsvIBwp5fXXXsPw+di1e5crFBuLxejs7KK+fhh1tXXs2LmDKVOn0dnRziuv
vkpVZRXl5WUYhsGgQYPYvn17boHKz9q1HzJ9+nTefvttjj32WEaPGUs6leSxxx5j+PDh+P1+pkyZ
wsqVK3n//TWctWABH3z4AYlEgjFjxrB06TJOPeUUhklaKsVRfvj2pT+9XQRLimBJ0Yr2P9uWLl3K
2rVrufDCC12xuUwmQyqVoqurywVLBMMkmUzmMUuEsy8zJ7zgiAwMeNkU8rH9ASQySOIFVLznk4EK
4VhbloVhGLS1tfHAAw8wZcoUvva1rxEMBl1gRLBJQqGQm1pO13UMw8AwDJe54GVdCBBA07Q8WqYX
DJDrL69iie8CpJBBCxlM8dY7k8mQTqfdFH/xeJyenh46Ojro7u6mp6eHTCbDrl27ePDBB2lpaeGa
a65xguqqQQAAIABJREFUqa09PT1uXwoTddR13a2P1zH0hsPIIImXISPAH7k95P0LhdZ4x5F3fAlA
TsQtC9DItm0MwyAUChGLxZg+fTq33nrrZ+IsC0Covb39sFcmD9WRVoGUqqI7Dqrj4CgKiuO4K1mH
PJFzHMzcSq/mODhSPbz1Guj7P1K3gRhHn6dVVla64X/ecLSurq4+baDrOpFIhIceeogxY8Ywe/Zs
nnvuOXbu3MnMmTOP6DAK+V7u7urEyiTAOewBIE722U2mFQUHp9+yKgr4fAaWZRIw/KRSKVRNAxzS
qTThSJhoNIbfb5BJZ3Bw0HQdRVGxTJNnnn2WyZMnU1dbh4NDwO/HdsDw6SSSKTRVI51Joyoqmp5N
na5rGql0Gp/Ph6qqZNIZfEZW20R+zrrPONtGzb2H+62nquJ8Cqvl/T04FDX7PHds63B6A3BQdIOK
qsEoCl9oZkl7RyexWCI7bB0HVBUnZID9yY5fJfcsDgYCWLaVe69mx4plmvgMA9M00TUNJZdGV1NV
TMvCbxh570glt6gh5gShYJDe3t7s4k1uPiHmUeKdm86kUS3QFDUv/Fq8sw+E1lqYpuUuBIm5Sjqd
zpsPpVJJLCu7IAXZuqRSKTRNRVGy5Vc1Fduyc/PLNKqqEQz4wXFImwfmOKI8qqpgWTaqqmA7DlZu
H8H0TaezGiyZTAbD8KMqYNk26XSWOZNIJPD5dCCr1yLPTz75Zw44KBiqwuCqCjjKwi+/SGDJ/7gw
nKIVrWhfnMmCYFSIF5Wsm+ENCym02u91ZoWTL09GvPojskMijvOGeHiv7/3dmzmgkBgbkMfoEL/J
zJRMJoOiKH3AChkskcNyBOuiULYEbzsU0kORQQIBKMiTD8FU8YIHAjARYEEikQBw0/zK9F5RPyHM
JreLDDDJ5fD5fO6fqGsh7RTvxMP7uVBIklc8TdRZOJIyw0QGSLygmDdjhKyZIrNvPquJiqhLPB7n
iiuucMfSwUKKDvk3QLEsejSNKT092MCHJSX4LQtbOu5g9XUcJwu4aBpTo1H2BYPsDQYJKgpaDhwT
f7r0XR6Pop+8IVfecVAotE4GPr3Aqe04YFlY/bSBcLj7XO8w+udQAJzHHnuMwYMH97lvN2/ezFln
nZX3TEwkEkyZMoU///nPNDc3E4/H3VToEyZMYOfOnTQ3Nx+x4SuO42A7Drqm8a8/uos/v7WLYFkZ
1iGEhWTbTcNJ94CiofhKcBzrU70nxTXtZBeKL4iiGThO4bLalo2iqZRUVWGEQlnQQQFFyTqImqph
OzZK9kccy8Sxsve1PxDAev2tHMjs4KCQ7t6DGqqkrCxEZXkATVXdsam4ZVMR0KSiKDi2g6JKz1Fp
SVrJogooqme82zlw1LZJdO4lOKgObNsNc+mzpO0c+n0ykJmWw962TqId7fjLa1AcW3iIA+ArDqqi
kLRgtL+Dv/7qFtADX1CwJDt2Hn34XspLOvDpfmy/jvrhTrSH34LS4KcC+Nm2GGMHOskb/uf9zRbh
Hp62VshpoDm596Mj3h8Htjlkn6uao7KrziFaYqOaEqgpRqgjYZ25sShw+ez/bIGd3M6KqqIAtgsq
Zce7OJ/iVvDAf1WBWNokaToMCvmwbMc974HbQck7h7i+k7s3HPtAO/VmLEI+MWey3ftN+ZSBeCcH
JJJJ0VlxDLc+9BcCepFRWARLila0oh1V5mU1CIfcy/YQTqhYyfcyP7wsCC/DopAgYn+aJV7nSjAq
CmmeFHKAZGddOOFyeJCYqIhQDhm0kNsjEAgQDAbx+/2ubolwIGUgwbsKLbNj5HqLssirifL55Gv4
fD43dZ4AKUSZU6mUm6lBCJr29va65xR9I9qtkEq/3HYi7t7n8+H3+90QJLlNxPW9fSr3oRxS5AWG
5HrLIUyCySKPRzmMqz+dFlkHRmYWiRW2z8pJ9dY1EAj0aedC4KK33DKgJ4MEqm3TrWlM7epiaCLB
36qq0DIZMgWAhYEmZyKm2rFtdug6x3d08GJdHUoOoBOaPQI4FZ+9wIl3TMjnH4glJj8/5HvaMk0c
y6JXVVFNE0WAJ6INAUtRcBQlzwEV/5UcCKQKQCU30XZys/2DASXyOCoUDgbZFOQi+4Q4TywWIxaL
4TgOH330EaqqsmXLFiZOnMjKlStZuHBh3rPoSHwvOLnh2Gv76VAa0HqTWMn4wXnmjpPdJ+2AYoPP
dJ36fPdd6XucqmRX8gt6/xxwWlWPs+44OfqVA7oNmgWO3Zd55WT3DdVWk9HKcRIS2ACAr48r6iup
xldajWNbRJ2c86kKYFohUD6cISMbKC8LHLaDpEgfBKHBdrIuYh6hIUt0QM05g053B/7yahcQchyw
3HY70ERKzjFF+TsBFMchoKoYI5Ls3b2PrlSQeDyJrmsDktoc20FVIG6pJDJrUHKMlC+aAymXp7I8
yAnHjcTwhbJg2czhaIqN/t+v4USCYNtHfIiFg4NmK3R2OqwdZOcDI4d8joJ372EdryqQyNgkTZvK
oI1VAAQ6NKAr24c7etIMCfty94fzmS6WOIqKlknwgZrEcpQv5DgvgiVFK1rRivYPmnBgZcfLqw0i
nB4R/iCABtn5kTU2ZEfcuyrtdbQLASOyJoV8bnlV2vvSlLO1eFko4vzyMULIVoRwyIwHoV0SCoUI
BoN5ArAy60LsLztWgtHhZTnIDBLhfIrzChaL+CycVtmRExol4nhRD5GqUpRJtKnoPy9Q5dVIEcCQ
3+/PC0sSAJrMABFtLAMZ4jry9QoJEwoQSAZJZNaODKzIfS2PA5lVI9fVO3Y/6xV9LwPqYMyRQsyc
PFBRUdBsmy5NY0ZXFzWpFM/W1KCbJqqiYA8AAAw0sfMDO0Mh2tNpRvb2sqm8nEg/QI4MtMkZqrzs
kkKMEi9QUggwsU2TlG3ToyhM6OqiureXtyorURwHxXGwAb9l4bcsdMdBz/1uKQq2omAqChlFIaVp
pBUFS1Wxc5N4zXGyf2JSXyDbgRdo8jJm5P9inIr6i++KonDxxRfnnVvOwnSkgiXZemfbxq+rKLEO
Lj81wP/52kWkUxlUxUHxuje629rZMZKru53LEGblWGBa7ncRhiKeFYZhkEwmMfwGjt333pGBVvEc
lJl9pmmCouYAFWegimX7X7wP+sFkbBR0xeHmB//KykSIsKG4AIaZtgn6dWrrwlRVDkdTHSwzyeFE
xglgz3ayq/IOoKlgaCp+n0qJoaFrCmF/1kUI5b47Dqj19Ti2lV11V7Lsj960haJAPGWRNm3iaYtU
xiZt2VhZ8gyqAqqqoB4GYOI4YGgKwxtryGQytO2zadsXx7IcdF0t+Kx1nCxYotsqGlY2bPCLCiA4
DoqSBZt6ezOYRgbbsrJhON+chx5Lof9hKXZlGMU6sgETB3A0h0C3QuUem21DbYyMgiOTPw5yAi3H
ePKCc4dlNqi6TtgHvX/veaRjastDZHL30GfZQdkrqqhoWIqWe2YWgZIiWFK0ohXtqDM5Ta8stCoc
UxkYESv7qVTK3VZI9FUGBkR4iVf3A+iz8ux1wL0sDS/gISbRMlAjnHGvY+R1lrwsBvl8AqwQwIEA
T4SWiZd5IcomWB+qqpJOp/OcYfnc4nhZYFaIzMogggBDTNN0nQNxLcMwcjG7hitCK7NbRD96HXkZ
7BECtgIUCoVCeawCua6iTcU4EbopqVSKVCobQyxAIjmkSzja8vlEmQVII8AZWRRWFnAV10mn026f
iPEjs0pk0OWzNm8qaa+YbyGmSUHWieOg2jZdqsq0ri4GJ5M8U12N3zRxbDsv/OZwARMb8FkWOwyD
4ckkGwTAIT0D+gN2CjFZCmkP9ccOywNLTJOo41CRSDBn/356VZXqZJJ5qRSvVlWh2TYtnZ3ZflUU
LMDOgSRqDghRc6CIcPxMRSGh68Q0jS6fj2jus6mq6IDftrP7ehgxMgjY7yQtd5+Ie1iwm+RjC+n2
HNl0bAkQy5gMq29gyrRjD+nI7u5uOjs7aGwc3qcdkskkjuMQDAbzjnnzjTeYc8IJbNrUytat25g7
dy6WaaL7dFQ1q+Gxc+dOUqkUTaNG5zQScuCFmUHXfZ9KK1T+vxWY7TaK4sOysn1dUx2htiaM4VOx
LAfTyobxCF2OvPtShNNJ48Cys/e5pigEfCrlIZ2wX6c0qBMyNHyaiqqSB0jZfUCJfCCuMqzkOXG2
DRnLpjdtEU9ZdCdMepImvalsyJuiKOjqgSCJQhk9ADdcKJ2xUBSVoXVlVJSH2LG7h67uFJpWKANU
zgFWVED5QruPMiiqqjkmjqaiOA5OTwJn0TzY2YG+pBW7NIhiHWAsHUl3toODSjaUx9agpgP2DQJT
c1BEeM0Avr7tOPhUhf29aWwHBpf4yNjZcKvDB6eyDCnLoQ8bpND7pdCzVN4m7svPnFki3YlH3ogo
giVFK1rRinbYkwVZSFWklfU6o/3pgchZSmTnQdbBkMEZmRkhAyzyC1PWOPGCDt7VbOH4y2CKV0RU
ZhyIc5qm2YeKLzv2criQWAn1AkyO47jASCHxWdkhlkMaZOaNDKCIawqQJJlMuv0hPgtQQrSbCBmS
QRavLonMtBHAiwCBIpGICwaJMsp95y2bZVkuuCGPHXn118qtKMt97gVKxDUFOOXVaZGZDHK4mN/v
p6SkJC+zkujLz3M1vxBQcigaP47j4Nh2dp3KtulWVaZ2dVGXTPLMoEH4c2KPTgGg5FDDcMTxmm2z
X9cZ19uLYVlYuo7aD3DjnZT2N2ntLwV4HzA0k8EyTdK2TWM0SsJxSDoO+zSNpYMGsaCtDS2ToVfT
eKusjJSqYkohOHnPrRxQYjgOhuMQsm3CpkmpaTIilSKQC/2I6zq7AgH2+P30aho+x8EQYSGHycwp
xAzqz/E6WszJ0SVSyWS2L//4GNo7K1ACgWx4jbBrrsGurkZVFNrb23n55ZfZv38/Y8eOxbJs2tr2
EA6HsW2bzs5ORo8ezQcffEBd3RAikTCrVq1i6vTprFnzAZu3bKG1tZVAIICqaXR1dhIOh+mJRqkf
Noz169ezYcMGamtr6ezs5PTTz2D06FHYdlYc8pOos42CpuACzqZlEwjoNAwppazUj2U7mKZgtgys
naUCluNg5ZzLsqBOVYmP8pCPSEDHpysoOUc2G4rjkI1cOXSGnFVgX5+mUh5SqSgxGIaDaTlEkyZd
vSb7Y2l6kiaW7aCpClruPusvna6aA00yuXYYNaKSvft72bG7B8uy0TT16EihntOFcVQVxbJxdIXM
DQsxvvM7lJ0dEDTyAJMjB/pUXA0TW3UI9aoM3QObGi2MTE7jY4A6KWRZUCWG5oaL/V2EkALPyEKf
HcdBV7NsLruoAVK0IlhStKIV7YsAmAgmich+Ixx0WftCsAtk4UfBKNB1nWQy6Ya2eB1Dr+MmTHZu
veCGN9TCm37Xm5lH7C/rjwjwwAsceIVOZUaKyAbU29ubx3oolFJX0zSXTSEDBaZpum0o9hfOvii/
yD4k2l92MAX4JJgb3rAoUf9UKoVlWQQCAUpLS+nu7s7LwFHIsRYAkQjBESEFMotFbmOZYSKAHJkB
VCjLkQx2yCmJZYaRDJiJdhJsEpGuU87+I4NkmqYRCATy0h8X0sj5LE0OP/K2hwwAFQRQACUHlEzu
7mZoIsEz1dUYQvDWA5SIcymerCNuphzps1gxdnLsimROhNKwLCxNQy/Qb972LOQM9gcCeXVmxJiO
Ow4JRWFETw/H791Lp67zdnk5k7u7aTUMXiovp0dR8FkWaUVBtW38/cSzi1awFYVEDhRp8/mwchN7
n+MQtiyqMxkaensZF43S7fOxJRSize/PZqQQfXIogEGBCb/8/Yua5eeTAtPFvetMnYo2dAiKYO+J
tikrc7NzCABUfN66dSt79uxh1qxZDB48mHg8zs6dO7Esi/LyMjKZDJFIBE1VaWpqQtM0hgwZwrZt
2+js7KSmpobGxkbWr19PZWUle/fuxbZtQqEQpaWljBs3NlfGT8apyvZ3FiwBBdO0qa4LM6SuFE1V
yFjZMSkAhAPCl31BE8EiCfo0BpcbVJcalAV1dFXNgiJONoxmoFF4qHXyjlPbEZmBDpSpPOSjssRH
Y1WQnmSGtu40e6NpEhkLTVHQ1L6giXxuVVFcMc+a6hJKQj4+3t5FPJHBp0vhmkfy2M89Nx1NRUln
cEr8pH96Eb5/+f9Q2npwgka+uO4RBJgIKpGpO9TsU+gsV+mOOGjWATClUKWEwKxfU92x9Wk838S7
TlcVdkXTlPo1Qj6tz/W8jNk+78OiFcGSohWtaEX7pF9QyWSSRCLhAiViRU04t4IJIGtoCCdehEn0
9vbS29vrOt1y2IeYbMthIN6wC9u2XaFRb+pd4bTJ4RkCKBDfhbPtZcEI57zf+OqcDoGmaSQSCeLx
uMu8EEwIUWcxGRTsClnLQewv0vkJB18GDGSNDhFS4jiO237JZNJt20Qi4bajaEsgT5hWrNoL0Veh
OyK+y/X0smtUST9ACPuKdhfbCoVQyW0sri9AHZkNUogxJIMroi/lcghNEjEWhWCrNx2zsGwqwbR7
zv4c18/iHpKz83gZJDKAUmibAEomdXfT0NvLX6qr8VmWS+P3AlCFJvgiPbAlshyJNMPyRNJxMAGT
bGhKPOfw9pe9KW8SWyClcH8hOHkME9MkZZqMbW+nR1HYYhhUBwJM6unBKCnhnXCYuKIQ03V0286G
yoh6H8QxFPqVmtA1EWUHYqpKVyDAxlCIsGVRn0wyoaeHycCWUIjWkpKslkuO1dOfifEv+tcr8Pw/
BFHPtuvYMTB2TH7GF/E51yfV1dVccsklxGIxdF2npaXFBTfE86OlpcXdblkWxx13HIFAgKamJoYP
H04wGGTkyJGYpklFRQWZTIbm5ma6urqYPXu2C8yHQqG8lOyHAv4cilMlRpGmKRwzvILhQyOkMzZm
jh3SJxOVFG6jAGYOJCkP+qgt81NTauD3qa4Ya7of/YtC+keHC24NdA9bDgj+ZVkwy24ZPijInu4U
2zuT9KYsNFVxGToiPMebBt5xIGPahEI+xjQNYtuObvZ39OLzqZ8rYP3JAibgaBpKKoNTFcb8wbn4
bvwDJDJg6Ci5Z9WRFo6joGArNrqt0LBTZc1YC0fobSj9P28FYHI499HfB+pkMdgSQ0NXCzML5fmd
7RmjRcCkCJYUrWhHnaV6o8R8Eap8xbb4PEwwSoQGSSGHWs5aIpx2y7LygBHhnGua5k5k5RAZrzCq
NwWwHA5TSAxVOJvCOVc9QoHCSU2n03nhGYX0CES9BPghnPve3t68zDmyKKkIgxHfTdN0dU3k1Vc5
9MSrEyJYKsKEBorIuBGPx0kmkySTSaLRKKlUKk9gUlxbduKEA2dZFvF43G0PoQfiFe31hufIIT0y
yCSDD4KFIlaMxTiQgRPLskgmk3lMFGGC+SHOLzNXxHYBDvX29rqsEpEeWQ6NksO4BNAiHC45DOvz
AEu8f3J7ellWTk6w1Mk2BD05RkmjDJTknPhCjI8+jnpuwmgqCiHbRnUcYjnWiFczwRa/SYKyA9Gj
vSmjvWyT/gRiLcvCtixStk2kt5faaJRSRSERCLAhFKJTUWjTdVI5NolDlg3jHHKKWiUv7E+AQe53
28afA6IywPpQiPUlJVRnMoyLxRgVj7M6HGZHMHigLQpN0nIgp7jXBLAql+NoAc0LgmPyuE6lsbUD
ouAic5EiiboKTaHy8vIBrydvLysrw3GcPC2SiooKtyzimREMBnEch3A43KfcMlutPzbQoTrxAiwp
L/VTXV6CadouUFmIdeGG29jZcJvykE5DZZDqUgNdVTBtJ8cgyb2DZJCpH12twym30s89zADXsHIM
EV1TGD4oSF25n91dKXZ0JomnLHRZj6QAAKOqCpbloKoworEcv19jd1sMVVWODsAkJ+Lh6BpKPIU9
YRiZm76E75Y/gWVlQ3UkQPqIwIBQcBQHxVEwNYjEYNhuhe1DbHRTSturMOB4/HuB4oFSI8vntB2H
Ur+WzQ7VzzPWAXQFdnSnqQjqRAwNi6IVwZKjxtK88eBibvvT61B5PM88fMsn6Hjv5vpbHqHlmkVc
1BD51Gqwa9Pb/PMvPuLJn3/9cyt7dNs73H3vwyxft5mOODQcM5b5X72cL88bi/8z7tH2bcv5xh3v
8p8/+QajQ4eOeqQy+7j5R49w/D9/g/MbIqx84Tdc/0KQl396YfHJ8BmZ7Dx7U/4KR1V8FuwDWQzV
m25XPlaEmHhDL7yaDnIGGTExFgCI0MwQ+8rnEOcR4IZgewjQRNZbkVMHe8NnBNAgQAN58i2YIHKo
j5i4ixARMVENBALYtu2GMmma5gIiImRE1EtcG7Kih7FYzGVaCJaPrPUhC6yK4wWwIrZ72R1+v7+g
My8zIAQrQ4j3ys6uHIIlgCFRH7ldBMNEDg0S+8miszLAoihKHkiXSCSIxWIuUBKPx0mn03njQLB8
RIYiMQ7krEufl+PqZYv0p1XiOnKOQzoHEiSBCd3d1CcSeYwSm76pbAeqow34bJvfrFtHxDS5YMIE
orruhtmQu66uKOiOQ1JVUfsRcu1vkuv97K1vIc0SxTTZr2ns13XKUykGJRK0h0KsDofxWRa6bWN7
w4kOwdEqlFXIu92WHBm/ZaEAnZrGq5WV1KTTzOzqoiadJtOP1o0cWiQ/T2SQ5mgxuU/l7FQHtikY
Ab8HUJAy0+b2FQzD6urqPOHjaDRKaWkpAF1dXX3AlDxAz7bZsWMHDQ0N/TpU3uPa2tpcDaZC7KvD
YWu4Kj9CQFJX+2VtiO8p06bE0GioCjC0IoCmZEGStJW/8i0ASnKZWLygiCMDmjnntb8VdtH+pu3g
IB2TA2/ynVvckCGvs5q2stoljYOCDCkPsLU9wfbOBBnLxqepee2XnzL9wLxh2JBSdF1l244eVD0r
eivrJR2BN0QORFVwNBW1K449ezTWt09Gv/M5nEggy9M4AgGTbGEdbBXq2lT2DnLI+BxUSz2A5Cmf
zjMmmy0pK6Zr2gMIt9r9s1hclqTtMKzMDzhYRzw4V7QiWCI7yOk2nntlDTOvvI1r540tjoC/C29q
Y/H3b2fbuAX8+I5rqQzD2ree4O7/+AFU3s0lk2uOjHpkTKK9Zt7tYPiKZKvPeoLsBSCEMyuACsFc
kFP7iu/C2RWMDsFAkF9ysrPvda4Fa0M46qoU9x4KhfLCWmzbdrPNCKaG0P2QWSXeib6cTlgulwCC
ROiLAFRkIVTBlBBhSEKUVA7FEecTGWoAEokEtm1TUlKSjceXMtAI1oEsDCvCckQfCC0Rn8/nZqkR
AInM1BDZJUQ4igCcBCvG62TL4VBAXv+JPvECV7L4qqxTIodXyYCaaBsBqAiHU9Y8EWNHhHwlEgm3
Lj6fz2XsiHEmxogYg8FgMC9tsxg3spjw5wE8ChBKZpB4QRInFyrTFI2y3e8no2l06Tp/q6xEt+08
oORQQJI8J09RSKgquqblAQWOpGNi5FgoaVXFR1/x1kKZbrz30MGAIvdZIoA3y+KdSIRjHIcNwSDp
HHhhQ3aF9hMCq+T7uw8jRwCltk2JbdOh6zw7aBDVmcwBQGmAZ6Q3he3RZDKQoKoqsXgvwYCRZYvk
nF5FcVi58l0GD64mk8mwdOlSFixYQCwWIxAIUFlZiaqqrF+/niVLljBkyBDq6+vZuXMn9fX1xGIx
Pv74Y1eXZMuWLZSXl9PQ0MDrr7/OwoULqaio4IknnmDIkCEsXbqU2bNnE4vFGDZsGG1tbaTTaXw+
Hx0dHUybNo1EIsGuXbvQdZ01a9YwY8YMHMdh7969DBkyhA0bNjBt2jRaW1uZO3cuVVVVh8EG8oBF
BQBDAVSAw/CqIMMHBQn4VDKWg5lj3qgMzHaxc1mwsivlCiE9q9MQ1DVCejYUIahrA5Y0YVqYtkOv
aZEwLXoz2f8Z286lDVZQc2K0hQBHVYTWWFkAZ1RNiJoygw174nTEMnksE6GB5NU1ymQsageHUYDt
O7uzbrl0zJEKmLj9rmsoHTHM82fC3ij6797ELguBdSAc7Uh5Kjhk2SW2auMzVRp2qnw0ws6mv3U+
PRBYACWJjEXSdKgM6Vi2c8jCr/2B9xQY20UrgiVHtC2++kbebOuEe39AOvYD/v2iY9m64lkW3/sw
q7d3Ulk/houvvIoLZhxDe+uzfOfW12iq7+TN9+JcdtviPkDAx2ve5rZH3uCD/SYTjxtHNCNvW85t
j7zCqt0xKuuG8fWLz+Gi5jr+7/dvx3/BN7hxWjXR/ev43//6R1quuTL7fff7fPu2FfzzovH8/Ndr
aRmr89qaHUQzAeaeew43nj6qT536uw7AmmWvc+djS9i4Pwahck47awE3njUO/0HKPiDgFGtjW6yE
c776JSY0VQJQd/63MDozrO3oBLJttHvtayz++a9ZvmkvlfXNLPrOtZw5+eDbZDvUtiKT5M+P/ZFX
31xPzFfO2Recx3fnjcA/QBs88ItHWNXdxaof3UvsukXMrYtQNWgQZKL8/pE/88CbrcQIMLF5Kjde
cdphsVaKdmgmmBVC/0OEociOgXB0ISt+Go/HXRaDHIojjhGOurzaLwAPWYhVFsSUw3UEQCKuLWtb
yBk2RApPv9/vOsrivILxIc4tO9YCCJI1P8T5RJvIoqvi/IFAwHWaRDlkXRDBkEgmk9i27QINAmQR
GiWCzSHAHVEewbYQZSiUbjmTydDb25vHzhEhLHIoijeNrpyRRw5hEgwOsXIui7qGQiFKSkrc8CHB
JBHjQQ6nggPirIXCt+TxJDIIiTEDuICU6HuhVZJKpYjFYnl1FuwVGRgRbSiAnc/D2SykRdLntxxQ
Up1IcFx7O2N9PjaGQrwXiRAwzQOhOQWEeb2TRK+pZFPt/tPYsVkwJMcgccNwbBtT0xiUTpPRNNKa
RsATFnewP+/EtRArxcsuydg2hmkSSqVYFQ4TNE30HCDU3yr94bQ7UDCTlrw931HIgkZ67l7p0PVT
zZaNAAAgAElEQVQDQqUFTNYtEqwuOczsaAHNxfM4k8lw++23c9P3rkXXNTCT+AyDRDzKi397kWFD
h1JeXk5bWxsrV66ktbUVn8/HJZdcgmEYRCIRhg4dimmaBINB3nzzTYYNG0ZJSQmDBg1yhVsjkQip
VIolS5agqir79+8nmUwSj8f54IMPCIfD7Nq1C8uy2LNnD62trTQ2NuI4DgsXLuRXv/oVs2bN4v33
3ycajTJr1iz32IaGBt544w3Gjx/Pxo0b2bdvH5s2bXLBkoPDJOQB5/05ainTJhLQGFsXpqrEwLTt
HJPkQJYcx9POSg4gESvhAV2j3K9TbvgIGzrBHECSzWCCC6gMZCW5RSYl5wibtkPCtIhlTLpSJl2p
DEkzO951z3uhL2iSZZqUGBrTGsrY2p5g0744inNA1FZxHVTFwya1qKkOoyiwbnMnDqarp3QE3xxZ
kFtRUDQVunsxvzUPUhn0PyzFqSzBMe0DgOyRUCUpHMfSHKrbFfZXKnSW2eimOqDY6ycD1oDzD46K
PgLnRc2SIlhyNNm1d91G7PIfMP57t3PJ5Bqi25bwwx8/TNNXF/HoGWNpfeWPLP7xjwjfsZiZQKxt
DbF5N/Db74wlXJnvzEd3r+OmB5fQfO553DItzIuPPcU93ckD2+57hdFnnckTc+rZuOwNbrvvESI3
LqJlbDm/WbWd1LRqdm9aRzsma1btJjWtmo83rSfdMIr6iEZ0/8fsrruY333960S3vc0/3/EsS6Yt
YrS3DP1dx7eFH/5mBedds4j/HlvBxlUvcM19z/LatOG08HG/ZT+Y+StHcs6MMPff+iP2nLeAOZMn
0dRUwwlXXMsJolwd7/PDW++n9ozLePQnk1j7ysPcfcuPqPzVbYw3Nve77bjacN61DrWtUr37WZOZ
wS9/eg7ta97gpt88xdzmRYzOfNRvG3zzmov54PuPcNp1izi/IUKq9wRuvEDn4zWv8Js1Or/8+S3U
ZfZzzy8e4e5XRvGLs0YVnxifgpMnHOVCcaSymGcsFqOrq4tYLOYCJLFYzBVkFcfIIRrCKZcdcXmV
WmZbeIGKWCyWt0odDAaJxWIucCIYJXL4j2B9CCZCITFGAayk02m3joJdIWfFEc6RiKMX7SAfI7YJ
x1+ATkJnRAANon3FZzntrmBjiH1lbRDBspC1ZSzLIhaLuausjuOQSCRcPQUB1nhXwEXdZHBI1pcR
/RYIBAgEAm62CVFmud7CBOgj2lsOURBgkRhj4jcZbPKyGkT9S0tL8fv9bmacWCxGd3e3yz4RZZbB
JAHofN5Aifc3mVUS1TRmtrfT3N3N0zU11CWTNPb28n5JSZ6Ya6HUvQNOBHMTdS0XeuJAFijxCLxa
ikK1adLj87nOjqwfJH+W/7z6JXnitJ4QvjyAyLJIOg5Nvb2UJhJsLytDkcJu/l6QxLvi2N95nIHC
egTz7SAT7H5DqY6y94B4Lv31r3+lp6eHzq5OdCxI95DJpAkEw7S0tFBVWcmoUaMYN24cw4YNI5FI
UFVV5T6LGhsb6erqorq6mqqqKhYuXEhtbS2aprkASSKRcBlz27Zt47e//S2nn346jY2NbN26laam
JrZs2UJ1dbXLqjvhhBNIJBKUl5czdOhQFi5cyKhRoygtLaWiosLtkwkTJrB582bmzJmDqqokk0na
2tpobGw8tHvpEBw0R4QAVAQYVRPC0FTSpo2iIAnA9h2ndi6FsKGpVAUNBgf9lPr1XJaRXOp0DrBV
DtXsAqyVEp9OxPBRV5IVlO1KZWiLp+hIZbBy4Xj9Ccqqrpinw8jqEKUBjQ92xchYNloO8JYBpTzA
xLSoGxxhX9te0nt7suE4Rz6aeCDcRgHiKawrT0HZH0V7eS12RQjlCANMBGhiK1mh2pHbVN4f52Cp
DqqjfGphOLbjEPJphA2tTxjO4T73B/pctCJYclRZ64oXiTWcylUXzSVCliGxZ8Uinnt1MzNPAnzD
+PJ506mrDPc59uNNa4gNaub/zBtFBPjqBQt4bc0fAdi4ZhWxuqlce9YkIsCQ089k95qP+MuyPdxy
3Ahiv/mY9sw4Nq7ax+jjmohu+5j2zCg+WLab0ce1EGY3/lAt581pIuIDo24Ejb4lbO1O5oElA13n
7HNH8fMfjmDIoAip3igpXzkRn0l7r8nHu/sv+8EtzJduXkzDK8/y1PPPcvODd9JBCXPOuISrrjyX
OgO2rXiWPZXH8+NLT6PKgLrzL2PtC1fz1IodhI3+tx23MD80auKhtpVvEN88dyrDy4LUTZvB6CfW
sbE7SUtD/21AmQcEClXQ3AC7egOkuz/iz2+u4bxp47jxB9cVnxSfksmx916tBeHgWpZFNBqlq6vL
BQWEw+z3+93wEbHiKqfrFfvKDrIMFgjnVhZvFUCLzFiQmRhyJhbBxJAz58hisjJIg2e1MBAIkEql
XGdfZqwIRz8SiRCJRPLCgUR9gsEglZWVJJNJurq6UFWVYDDors4KBoZcR3ENwQQRzB4BEqiqSnl5
OZlMhv379/ehmwogR4TkJBKJPGBF0zR6e3v7gFAykCTaK5FI5AnQBoNB9xwCyJDbTGYFySl/Zb0T
URY5dAlwtVQEeCaYJbJ2igBshIMuhxyFw2F8Ph/t7e1uiJM4nwzWyQyiz24erfQJNfKySXAcLGBi
Vxc7/H7SZWU0xuNsCoXYbhhotp0XeuMNvzmocyeo7lK6YDmNMOCuBtelUqwtL8cAN92rrD/kBTO9
QIk8KfWG74hxmvcccRwimQx7c8KfToFjP4k+GGjlsT/QxCkggDtQHx/NE3JxL06ePJmOjs5sH2oB
CA3OUvNVlbknnujuf8wxxwBw9tln57/H/X5mzpzpfp87d+6A1y0vL+fmm29m8ODBKIrCKaecAuCC
G/3ZjBkzAJg1a1afbfX19Xnfhw8fXhD88ta/32eHcwA8t+zs/TVhSIShZT5MyyFj5+t3FNI3Me2s
kzg44qcm5KfElxOqdgYGR/6e1MGy9gmApqoMDvmpDvqJpjO0JdK0xVOkbRufqvbLYHMch7RpURU2
mDmijHe3RYmlTHya2kdHJi9TTsZkxLjRBIy92KaJqnP0ACaqgmLZOJaN+d35KHu6UDbswYkEwDpy
0ibL7BJbdQgkVeraFLYNdVBNp1+x138UlBWAie0UM9gUrQiWHLJ1bO8kXNOC4f5iUFlbQWxPZ/Zb
uIJKwyh4bPumTsJlTQeODQWoC2WbtH13jPCgcdJ5fVQNChPdH6WqYRx1madYtXs/K3fDWRfP5MUH
X+aD3TtYslvn7GMGQWY3+HTCgunt0/H7gAwgRYMMdB0wWfLCUzzwSisxX5jRDeVEMyZpzAHLfmhm
MHXeuUyddy4Au1uXcPe/L+bm/zD4r5sX0LG9k45Nr3Pegr/mHTVleycdRv/bvHbIbRUKUCXK7wM/
5MKK+m+D/mzI2Hn859cDPPDMi/zvR/4f4brhXHvFeZx9TEXxifEpOXreVLyy8KtgIAi2gsx+EI6R
7KALZ0uEuQimiJz9RExMBcAigBI564Q8eRXgSiAQcMsqwJNUKlVQqFaYLEwrXtgiza8sQCoYLLqu
U1ZWRiQSwe/3u0CCEI9NJpP4/X6qqqooLy93WR7CWff7/W6oktB9EUwNAQSJdhKgjGBFiGsLICga
jRKPx13WiK7rLtAQCoVc4EBmsRiG4ba7MBEaJQMUIk2z+BNsGFn7RYAbXiFVL1AiWDkC8BF6MiLs
R4ToCGBE9FkhjQ8huCsAMwHaqapKOBzOG08CXJPTK3+eIq+iLnnOueOQUBQa4nGmdXaiOw7PDRpE
nWXRnkuXqwndgr8HKMlN5LMT4PzPbjpTxyGlqtQnk2iKQlswSKmi5IElA4EmA2mWFAqB8TJqDMui
V9cPhBnx6WeSKQRweEGTQ2GJeFMHy2LVR9N7QFhjYyOXXZYVr08mesE5kBXLzomSqsqB+lt2LvRP
1Q6pT2WhbvFMr62tzdtHZB6TmWLycUJE+nCdtHQ67Wbr6W+fPuPByUqnqqqCadkEfCrjh0QYVKJj
6X70oI7VG3fvNa9Iesa2MVSFpvISakv8+DVVAkgODo4cSpsW2scLfpi5rxHDR6nfx7BwgI97emmL
pwAFTe3LMhH3fMZyCPg0pjaUsnpbD7GUia6phTVMyLJqFCxCAc1N7XqU3CjZZ5imoqRMnNIg5s3n
4vve76E9BobviEspnNXjAUtzGLpHpb3Cpjdoox2G2KtTIGy0X2HWAcDtTxpEH+j+LgI1RbDkiLLK
+jCxV3dkBd8AiLFneyfhY8JA54DHRuoCxLbtP3BsJpllLABVdQFiy6RtJNi9O0akIYg/VMvcOpMX
3nyXGBV8vWEYu8tM/vLKcnaH6pk+KAi7c6skByn/QNdZs+yv3LPK5D9/8j2mDwqS6t7CN77/x4OW
/WD20SuL+c69nfzs1z9gVDj74q9rauHi85q5+c/rgQVU1pRQO+4CHrzrckRunWhHG4Qr2Pb8i/1u
89o/2lYDtUF/Ft2/n8gxU/nlT04k1dvJnx95hLt/8wZn//Cc4hPjk34A5Zx0saov2A5yphqRqtEw
DDfcQ7AWZNFNwQqQQROhHSLrmQi2gABTxERYTvMra5bI+hyyc2MYhgt0COdb1EUGfESIiOwwCfFU
MXGWNS9CoVCeuCwcYNAIp0nXdYLBoNs+YuIu6p9KpVymiQAN5L9gMOgCDHJaYFVV3d/Lysr6vOQF
SCC0XURdRZuL/94UwXLIkwDE/H6/C4qIuop+EfWRUwHLmY9k8ESUR4AvchYh0SYChJHTEcvlkseO
PA5EP8riu6FQKC90SgbfPi/xzX6z4ZDNUhNOp9nh9/NBJEJzTw/VqRRvlZdTlk5j5VbaCglAfhKT
OcdxUB0HU9OYGI/zYVlZloJfACgZCCTxTnoHEoSVPyuOg27bpBQFVRJ7/Cz6yauvUigV68EAEzH+
xfjypvA+GiwvC4VlYdkOPj0HPEp9HdsfpSQSoj3eztvL32bBaQvwaT5QDpwjmUyyZMkSmpubicVi
RKNRBg8eTE9PD36/n/r6etatW+cCqA0NDWzbtg3Lshg6dCiaprFy5UpGjBiB4zhUVVWxadMmWlpa
aG1tpaenh127dgEwc+ZMdu7cSVNTE+vWraOhoYGNGzfS0NBARUUFe/bsQdM01q1bh+M4TJ48mb17
9zJo0CC6urpcwe50Os2YMWMKACXgKNl2SZs2IUNjan0pJX6VjOqja8Ma0tFuaqa1gJnJKj0IRmQu
Q83QkgANkSBBn4ZlO6TtvtlxvIDj4YYW5O/juFlvCvZvLkTI0FTGVUaoCfpp7Y4TS1v4NLWPcGv2
GX4AKJraUMqqbd259MIFQnIkoNa2DwjhHjWBawIwESmFh1aS+clX8F39W0ibOD4Nxf7iZsjpAwoq
jhuOo1kqDTsV1jdlWSeHKvaax35VFSyHPmPwYKC2AOss+7MFMIqASREsOSKsacapGL+9n7v/NJLL
5jXT+srDPL42w2X/NAZYOuCxo6fNpOqZp7jnhXouPW4Qrz3xAqu6k8wFRjdPxXjiryx+oZZvHjeC
jcte4febTL55wTDAx8Tj6rjnwRU0Hve/qAtFmD42zG+fWc+0sy6lygfth1j+ga6TXr8cwxck4tNJ
ZaL85YkX+Kg3SUtm4LIDfPTeO6RrxjKhtm/4UcPkBTRxAzd//24WXXoqTTUl7Nm0hod+u5KGeTdm
95mxgPCDd2bb9YzpxNb9jZtveZg5P1zMZQNsu3pGvedq/1hbpbsT/bbB/8/emYfJVdV5/3P3W1vv
ne5OesmeEBKWALKOCIIjiog4OI76CuOLuOGGG75uM4CviA4uozgiI7jAjDL4IjpxgREQlLAISCAk
ECBbp7P1Wnvd7f3j1rl96nZVJ0ASIPR5nn56q7r33HOXOr/v+S4YOhnD5amhMbI9GTJVxs7GNXfz
0VuyfPET53B8v0170sZKtsw8LfYTWCLkEsLAVJa7iNhYUeTKaSeCDSIDJTJgIH8Q6boeARaCaSAK
3HK5HPVHmLbKrIJ4lK34LvYlivV47K1sDivLemQwRoA6gmki2B+iGBdeItFEoCqDETKRUqlUE7Er
F8piTMV7K5VKxFQRbBpZhiJHCYtJsxh78RqxT3FeBMAltgXUSEFEk/1iZP+UVCpVc07i5r7iWOXx
FX8zTbPGoFZ4x8CkJEiMrwCiZBaMuAbi5rv1JB2i/zLrQQbs4kDagV6ZqyfDEWyOw0dH6SsUeDyd
ZkMyyYSqMmSapBwHr05yyz4BSiJ9fWjsWtY0+qvXzWAiQXMQTAuWTAeYTFfQxf8WnUdRQE0nZRF9
DgLUKshUIyV6gRPaequKeyOtkX2TZI+ng6nVxsGq+IFfc14UXQU3YO575/GmY97IifNO5P1feT+r
v7eaT978SQ7tPpTvffp7KIrCxo0bWbNmDYODg6xZs4b+/n5s2+ahhx5i6dKlXHTRRaxevRpVVVm/
fj2LFi0inU4zODhIV1cXlmUxPj6O67rcd999tLW1cdhhhwFw5513Yts2mzZtYmBggN/97ncAPPjg
g2zbto1Zs2bR1dXF8PAwu3fvpquriz/96U/MmzePZcuWsWrVKlKpVMT86+rqolQqkUwmWbhw4RRQ
MCBM73Bcn460yfI5GXQVXMej1NyEccVnaFu/hl1/eJIuTcMNfEDB8X1SusaClhQdCRMvCKU6Ipkm
LteJS9kmgZNJkKHRFSr/X1HEfSfdU0xlVok+OEFAq21ypGXw7HiBrbkiWjU5J94/VVVxPR9TV1nZ
38zDm8fJyYBJnUjng7kInQRMSvhzO3A/exb6P/0CPD9M+HqJRgpH4IQA9apsMSVQcPWAtjGFtjGF
3a1hUs7emL3K19WugkOTpaGr6l6zojRVIVv28IOAZlt/wYBJPRaJkIgpioJWJ7Z4ps2AJS/pluk/
mcs/n+eqq6/h7d/L0b1gKe/4/KW8eVkbwxv28N6OQ7j8A0UuvXEVb7upxPKVKziuIxf+r+cwvvaB
Elfc+BvOvrFET38v533g3bx1QcilmLt0Be2sYe6KHixgYMUi0v+9nZNXdj+3/k+zn3LP63jNmp/z
ro9eSrq5g5Nf9zecs+COkHmytHHfAW688qtUzvkCX37rYVP2abUt5fJ/vYxrvnkdV33xEnIOtHX1
8qq/vYgL33182K/uo/nipedz1Tev4+3f+ypmahavv+AzXHhMHxZ9Df9Xr72QsVp+SuMxsJZ2c/KK
Dq743g8pf+BCvnRsmCC04qQz+NDmX3DpZVeRc3QWLV3BFy84ZuZpsZ8+OOUkGblIlv1M4lIVeYIn
pA9iO4KtIooKAQLI7AD5/fFtyoaw9cAPWeYgAwQym0T+Hi+U4n0XfU4mk1iWRblcjhgzMkAgmAxi
pVmwLeR9ibEQfici2lgAA3LBLxefspRIXrWWQSkhhxLjKLw6ZB8VAUbIkcbiXApZkMw6ib9OFIMC
HBHblVkf8gRESG8EO0YAOeIaiKcdCVBIlgrFWUXx6y6esiLLgeQxlPt7oFfq5OtKHiPf91F9nyHL
Ykk+jx8EPGtZeNUIW18UNM9HejMNUIJk7KpWQYf5pRLr02l0QJFin9W9AE3iJq8yaCaAyHqASlA1
nHUVBcP3CYRZcL1uV4ERX1HIqSpWEITv2YcFR3wCLZ+rRk2Ox45HZR9sq5L1PGgAAi8AFd5xwj9w
6LxlnHvKuXS1d7Fs2TLs/2fTkm4JPRCCgEwmwymnnBJJXmbPno1pmti2TU9PD4qisHz5cnp6ws/7
Y445hj/+8Y84jkNvby/r1q1j+fLlZLNZ5s+fT09PDytXrgznInPnks/nWblyJTt37uSYY45h/fr1
EZNkzpw5LFy4kO3bt6PrOrNnz2bBggUccsghVCoVjjzySIaGhujo6KCvrw/P8xgbG2N0dHTquazG
nFZcn9ntNsvnZFCV0GNEUVWS5RLDF1/G9okxZpkmnusSoOD6Pj0pm4XNKXRV2SuQJA6OqAoYmoqu
KZiaiqYpmLpa91avuD6uH+B4fuif4vniERDGBQvYJ6B+9HH1GbG4NUXG0HhyLHxOqXUZJiqe72MZ
Kof3NfHAxnFcL5QoRTt9ZUycJhPLNBWyJbxXL4GP/i3Glb8myNghxPAiAiaNZCcC1Mj7PgGQUtWq
vE4hCHx8VaF/UCWbDs1eeY6+JZ4fPC8aURCAH+y751i98VAVKLkBu/IO/S1WCJgwYwz7srjlzvqv
P72klyh++dYTZs7STJtpB2FbvXo1Q0NDnH322ezcuRPXdSMj11wuFzEcREFeqVQoFosR80QGLgTw
IDwzNE2jVCqRy+WiQl+W7MhRuCKRRUzGRKEtF+hxQECOuhX9E9t2HCcCPERfBwcHufnmmzniiCN4
97vfTUdHB5lMpsZc1bKsqKAvlUqRh4ss25E9PmQ9vSxzEX1KJpPRGNq2HY2P0M7n8/no/XJfZdBE
NtsVPiZyGo0AVGCSkTIxMUGhUGDjxo18/etf58QTT+SDH/wgTU1NEaNDTqKRU4/E2MZ9K1S1lp4t
fhfAimVZkemsDDyJ45WPUfwsm+7Wk940Aszkwl1cW0JWNDY2xqGHHsqXvvSlAzYZzeVynHPOOZRK
pQhkCoIAfJ8S4ALHjo6i+j6rm5tRfT8EBeqYju5L6Q1Vyr2vqviqSovv41UNmMV9Klg+8ncBBMqe
M/VWveV4YPkeF7Hi5XIZp1xmzPM4evdudqkqTyYSWJ5XX4ZTBUpM3+eobJYnk0l2GQb6PmKW1Dt3
AuBctWoVnZ2dNT46qqryxBNPcP7559PS0hIBnsVikb6+Pm688caD0vQ1qCa26JrK//701/nhr7bz
f85bwJcv+cD076M+bT8esV7v+l69ejWZTIZDDz207rZlQG66onC6+yfulRLvn8w08gPQNXjf/72W
kdlHc+L8ZnzA90NJitivZidQNA0vn6sCn7CgJUVvxsbzw2QbVUTP0lh64wegqQqWrpK0NBKGhqGr
Idgh0lEbFRHif0FYqJZdj2LFo1D2qLgC1JyaGjWVZQWGpjBednls9wSOLyXfyK8nNI41dJUd42Ue
3ZqNJBSR5BYoKzotW+/jJ5e8C81Ov+SAxaCa9qMoKjf8+CqOPULDNJNTWKh7qvAFyBt4PkFzAv07
t6P/570ETUnwhdk2LxpgoovPSslc1VQUhhwHH5hjGFSqALahKHgEqA4M9gQ80+9jOKL/yl55lxia
iusHdbGzegDOJJARXuvTsUqmA4Aayc7E9RoB5EFA2Q1IGOoLen6Hn7EqqlNkXXIRH/r335PUDy4A
/c03//kl05dXPLNkps20mfbiNTnqVS4gxORSFLQyMBH3h4izNIScR8hrZK8SOaVGZp3EGSFxOr8c
6Sun4cTjPONMA9H3+Aqe8M8QRaNcEArj2niEsCgoBRgke3zIXh6O42AYRgQOGIbRsNAUUhtRpMqx
x/UmFGJb8WOOgzb1jlkuNuKFg3xeZKlRfLvy+ZRlGgK4kEEecYzydoSPjczGkJkicdBALlzV2MRd
Pr/ie9zY9kBOSmtYJb5PXlFYkM9TUFX+1NKC7vsYAuSD/eNRIhU0LnBooYBHmIaxvqmJhMQokcGQ
vZXiyOMtn5s4syT6qh5XUdNIed5klHGdrqtBwISuc87wMFds3MivW1v5+KJFtFYn9fsSLHmuYzxd
dHA9Y9CDyjxQTkYpldB0Dd2YlCb6XvgZoelG3WKq3r0dByqOO+64absQBzkEw09ce+KZO925rQeU
xN8XPeOAIPBoSuj09mZAUfA9v8Z0XFEUvGIBCPAVFU2B5R1NtNkGFa/6WTmNoaQASXRVoTmpk7F1
DF2NDDejNJvnsJyqqgpJUydl6XipgGLFY7zoUCh7IbtFncqImvw5ZKU0WzqHdTaxZvdEmPITZ5hU
72HH9eluthkrumzcXcDUtYNOnrYXD5JJ9kiVYeJ+4LUo28fQ7lqH35QAzw9ZVxxYwESAIoOOgwZ0
V0ERVVFwgoDu6nXvCOmsorC5UiGhKnQYBl27YKRZYTzjo3sqgRpE7LHJx3Fc6gKO5zd8Bta7ByYZ
i3tmltQs2OwBWNEUhYmKy1jJY6DZwvGDiC2WNJXIT2emvTzaDFgy02baTHtRwZI4IBL/vyy/iXtD
yAW0nOwimANykSvLVsQ+Ze8J2fdDNomtZxopf3jKRXOjVJz4BD2fz5NOp0kkEjXSIwH4CJ8SuWiU
GS9xwEA2YBXFQbFYxHGciG0gfEHkPlcqlUi2I29TrNTL8iMBpshsCwG4yPuRgYP45FV+j8wgEWwC
eQITj9KUWSZy0pHM7IkbrDZKdxF9k0EROf5XPu/inMrGtfJ1KrNvBMvmxakpq8fp+xQUhdnFIssn
JvhtRwdJ1w2ZEwIoiI1JfOL4QibvQubiKgp95TJJ3w8nyJbF5qYmLEl+Uw80if8srosp8hrfrwGw
ZJlOdB2oKrrnMWEY9AlvoqpfypTJvaJg+T7rk0lub2nhztbWSIbz4tdESl2pURxAqpumchAUhNGx
JhLoVWD02R07WDRnTgiSSGPgOA6PPvooixcvplgsksvlaG9vJ5/PYxgGnZ2d7Nq1i3K5zDPPPEOh
UODEE0+M5Ddbt26NTJwnJiaiZ8+cOXPI5XJYlsWDDz7Iaaedxvj4OJs3b6ZcLjM4OMhrX/tatm7d
yrx589i0aRNdXV1s3bqVTCZDT08PO3bsQFEUtm3bxuDgIEcffXQkDdQ0jWKxSEdHB8PDIyxevIBm
W0fXJgurKYWequL7QQiUtDfRKgElSh3fD9n8VVcVWpI6TUkj9HeoSmWmu36mS7yJnoVMopEpSyNp
aRTLHiP5CqWKh6oqDVNBwuQbn4yps6wtw193j0fynXrMHcfzWdCRZCTnkK+4aFUAlVdSESoDJkEA
hQruF98Cl9+C9j9rCVqTBK5/wAtzhaq5uBoylDwmfaMURcGV50bVz6YmTUOvsks0D/q3KUNck9QA
ACAASURBVDy+eNLsNSD0FwklMyEzR60CF8IDRD7MRslOgsmkqiHTw1AVBifKZEydjK01BEGivns+
FT8gZWg1rJGazxMgaWgkdC2UztXMF14ZcfAzYMlMm2kzbabtgyaYDHIRGqfdyxII2btELqJl+Yy8
zbjpqGzaKrYhJqpyYo1gH4hVv3gsa71V+bjJZNycTj5mIf2JMzGAmmSaekWk7F8gticfs2DRiMI9
7u8gH3cQBJHPh0jbEZHGMgAgS5hkuZFgyIjYZRElLDxK4mMig2Oib3H/EhkUiQNickqR+BtQA37V
LZqpNeOVI4HrgU4yCBI/P3FGUSNg5kADJUEQEPg+lSAg5bocPzrKbzo6KAN6tYhp1O99NmGrUuAL
qsqxExNkPI+f9fRwSLHIhGliKEpDvxJxH8aZXIVCgUQiEfVPJCrFmT/1zjeKgqUo7LRtDhkfJ+V5
ONWiQo45htCzxPJ9nkkmuWjRInQg6Xn4L7JJoiyfE+MSFZZVkFKO2d4Tw+Hl1ET0s6ooVIKAn7zu
b+l7zcnQ28tfzz+fUx5+mF033YTd28ur3/9+NGDjxo3cddddPPXUU6xdu5auri7S6TSPPPIIS5Ys
4X3vex8PP/wwd911FwMDA1iWxU033US5XOaxxx6LwOSJiQnmzJnD5s2bsW2bvr4+RkdH2bRpE4sW
LULTNG6//XbK5TLbtm2jra2NVatWUSgUWLt2LQ8//DDz5s1DVVV6enq4/fbb6evr45577qGrq4uF
Cxdy9913UygU0HWd4eFhurq6QpNzx2Xe3P7qPTtJ31djwKbn++iqyuGdTWQMHacBUCJ/HvlBQNpS
aU/bGIZG4Ac1Bd9zeR5MC55U+wyE0h4zwWjBYSxfqfEkqbdfx/NpsQ0WtqRZP5LDUCfv1fgz2tBV
5nYkWDOYRXulJosIwERVw+hgz8f91JkowzmUR7cQNCVQvAMbKSySjzLVxRtvmpQl8domTYsYTa4O
zRMqPTsDtnb72L5KoECu7KEokDI0UCBb9ii5PrNSxl6ZpqoKjJc9Jsoh46MShMBGS8JAV6vskmmY
eQpQ8QMmSh4ZsxYIiS/KqIoSJXVNF3s/02bAkpk202baTJsWLBGT/LiBa7yAlVkN8UmTXETLBbn4
MJLTVOKSCk3TsG07AgTiiROCqRFnisgxxKIPslxIntTW09ELX5JUKhW9V441FiyTOEAiS2Hk8ZJZ
HUJ+IgNPsp+FLFkqlUoUi8Uavwh5jOKAifguXlupVCIvkEqlEnmbxMdGGMzGx0dmoMgFcyPfkjho
JXusxN8nJ+qI602MoexDI445PtmR5TzyPuV4aLlIeLEiXeV+OYrC64eH+XNzM1lVxfa8SHYT7Gsz
13g/xMSiKmlZl05zzs6d/K67G1XXsSVmUD1mifCf8X2fQqFAJpNhbGyMZDIZScry+Xx0/crnvZEx
rK4oTOg6Y6bJQKnE2kQC2/MglpYgVmcN38eqHou/D9NwnvckLRadLcCTXC7HLbfcQiqV4qyzzuLP
f/4zDz74IOeccw4DAwMNPTJenrWgSqAoVHbuorBtiEVnv4Xshz9CqnMWD1zzA1InnoT3gQ+gBmDZ
SV5zyqmUSiUKxRLz5s0LPazKFXp7e1FUFcf1mD2nl9a2dorFInP7B+js7GR4eJhdu3ah6zrLVxxG
a2srff0DpNJpRkdGGJvI0jN7Du0dnSiqyuw5vWzatIllhy5n6+AgixYvYdOmTdi2zZKlhzAwMEB3
TzepZIqtg9uY09tHc0srixYvQTd0Zs/pZXR0FM/3WHrIMpLJBKOjo2wd3IbruGi6XlOk1QAl1RSP
5R0ZMmYIlIjzXQ8o8fwATYXupgSdHQkqpYBKxQmZHtSPDX4+BbL8TFJioEl72sQ2Qq8R3w+NWePy
1cgPyg9jjycqDkO5MoZW3/zX8QK6mi22T5TZna2ga9WK95VWh8qAieMSJEzcz5yJ8cn/QNmdJbDN
EEg5QICJfJ3u6bOm3msJAjwtoHunwu52hZ0Vh3Zbp+T5mJrCtmyZtKlh6yq+r+y1OavnB2QsnYyl
RzIvz3VJGsbkgoLnoWpaZBocxDxHUoZGxtRw/UkAs97x1AcDBbEzlJ7NACYzYMlMm2kzbaZN22Sv
iukkDvXAirjpnijERVEssxPi0ahyXKwolk3TrElfEcwDAS7E/VLiq/Oy/0k9fwX5tYJdks/no6QG
AaKUy+W68buy5CQ+ZvJ4ig9qUUzKH8aiMI1TmgVwk06naxJq5GOWPVvk8RNAiUjNEWBJ/DyKQk+8
XgbLBLgTTzeSgRPxetnYV2YYiIJbNhAV/YyzcGTjXiEjkqVXMqglr+LHwTs57vjFnPQEgOL7ZHWd
Vw8Ps9Wy2JRIkK5UpsQD7y+gREz/XEWho1Khv1RiSzLJw83NtHge2SrIFwc3xDUprq+tW7fS29sb
SdTmz58fxYNrmsb4+DgAbW1tNRHeMrgabVtVcVUV0/PYlEyyZHyctYmEuCgbg7j1Z/+1UcJI0cL7
8dzHQeJCoYCmaWzevJk5c+YwMTFBpVJhfHyckZGRaHwOBjlOeG0q+G4RK6jw7kfux1ZUdDSWf/tb
gE/nhrWkLAvLL0MQMNA3i4HeTlA1TjzhVfjlIqqV4ORXnxieWb/MmW88HTwPNB2vXEKzEuA5oB0K
TjG8kjU1fM28OeG1oi3k5BOOrnZMBafAicet5NgjD0VPJHELeXTT5LAl8zBSLQTlHJ4XoGoqCgrv
Pf9dEPgsnfdedNOkVChgJxJ4VWBfM3Rcx6NYKnPc0SvRFI9iboJUHUmnX41eXdGRocUyIkbJ1EJN
mFb6JAyNWc02pqFx351/oqd/gK6eblzHQ4nJFxsVffHnxnRGl9HfpNe6XkDC1OhtS7B9rETF9RsC
Jn4Q4AHzm1OMlpwo1WdK3/zQk2NOi82ubKV6n75y51RKEBBoGkqhQtDXjvP5szE++zNw3DBq2A+f
YzQwO9239y4N2STTvbYq5sJXA+yywtwtKlu6wuunM2mgKmDrGqoSeoOYurpXcb+NZItGqonKxAiq
YeK7DlamDaeQjfxx4veWX/X7aTR+U46nyuzUFIVnx0rMyZhV8G+mBpgBS2baTJtpM20PTWZOiIJc
ZjbI7ID4ZC2+yi/T1WGSri9LeOQCXv5wk30zBCtFlvTEzWHlbciykHoTzXp/F+BCoVCI/Eksy4oK
dxF7KRfm9VbOZcBJROeKtJo4q0Om78tMEcFUqVQq5HK5iHESj86VTXHjEh8ZfBCsEhlQEWMvS2Dq
m6wpDf0Z4owf8btICpKvIdm0Nm6+K59DMQ6i7/IKvhg7wX6RwbO4NKnetXGggZK8orAonyfjONzZ
0UHacWqAkv1qACpt21EU5pVKzK5UODqX479mz2aXbdOkKCgxgEQGTMQ13traWiNFk4G0IAjo7u4m
CALGxsYiJkqxWKwfN1z92QJ2miYrgoBmz6NYpavXeJeIFVd50it+F8aS4to7gIwTmeWlqirpdJjs
0dvby1/+8heSySSDg4MYhkFfX99BwyYBcDwPmjP89M5nuf2vX4ocGL2qiTGaimWYIYjqe1NvDCbl
d0EYphrFt0T3gKoQVJkInuOSaG7GSqemppKI4jK66Yj8b2T/HFVVcR0X3dCY1Z6KCj9xPSmKih9U
X1/111AI/Tc6MyatKRPfh8B3KdtttBkGvhtKNpGkNEtb07RaJhUJ0K29pyeBkqSl09VkkrRNHt+4
iUdOO4nN51/Am6/7Af7uSjUJpL5MQAbfK5VKdK/HP/PqPf+mMizD9xmayqxmi20jxSkxwYrke+T7
PpamMtCUDOU4mloXWPH8gLaUQXNCZ6LoYmivVKSkCoIEQQiMjBfxD+/D/fjr0S/7JWjaZHrOHgCM
F/6R0Dj5aK8At2q3XA06R1UOn2Wz3fRwnICc49Fs61XQIqi9n6fZX/x4A8CrlDjukh8wtuGv/OW7
n+G4z1yDmWnlvisvxEo34e8FZWWvJGvV/fU3W8xwSWbAkpk202baTHtOH6hygSozBOSkF5nhIMsi
xHcBBsjvl6USIuFFZmLEE13kRBnxf9nno15xKW+rnkwozmwRk0zBwBARp2JV3bKsiBEiji8OEMmg
Qk1hUY1Blo1T5VhWER8skoLkKGRxDhzHIZvNRkDWdMaS9RgfAuiJ+0cIgKTeRFceo7iMSQYsZNaQ
HDEss0jE6y3Likxr5W2Ka0TE7Ma33SimVj6/AiCJS6BkAOiAzo8J5SK253H4+Di/bW/H8jy8mE/J
fgNKqpN0YRyrAatbWthp22SqxaQpMYXiXiV6NU64VCqRSCTIZDI1IEH8OhLjnclkKJVK7Nixg9bW
1sjwt16SjqYoeLrOuGnSU6mwPpnEei6yAymJw1EUjCDAUdXQAJb9qz0XkeHCwFhcc01NTZx77rkR
0LRw4ULy+TypVCoCUQ+Gzwc0hSFlLpu2lyeBKXm4/SqzR5kKlExbtcgFpu9DEGDPmkUmNQtFUUHb
g5JD3o4YajXEEnwtYO6cZqzOFL4nXWOKDLRM7t7xfNpSJgMDTVHUb/j5p+JVyjWgXsX3mdeUojtl
NwRKJv25fJK2TnezDQSUKi79Xd0Mfeca+o5YCUUPRZKZ1i00Ax+8gKEdO+js7g7BYVXBtiz8ajyx
W30eTsccmGRZhl4rlq7R1WIzNFqqAZTixafrB3QlLbblSuQdt0b2IH/+mLrGrIzJWMFBQeUVu2gv
AyaGijJWwH/tctySg/HVXxFkEgI2rDH73l/MkqDKghLm4jXPcjFPYqqnScQCVmDC9XCfcjGP0Ckr
PrmKR5OtNbzONDWU5dQzBQ5i8eKKqvHYj7/CUR/6GqdceStWUzsPfutjKIbNsyMlBlqsuqyp5wSU
xCKK6/Vjps2AJTNtps20mVa3CRaEAAuESWu8UBUrzAIAkc1GZfNQsQotDFuFJKRSqdT4oogiuVFM
rizXqJewotRZsY+/Rl4RbpTIIgMnot+maU4xu5WLzHj6TRAElMtlstlslKwgzGlFoWXbdmTgKo5b
BgkEkBD5XjhOTaSuDHLIxajov/AqKZVKNelGMuAhUnZkdkgjTxp5LMXvYrxk6YvMltFlfX/McDcO
zsTBHQF0iH3IDCV5n+Iakr8aAWkHqqlBQEHTOGF0lMfTabKaRsJ18SbF0fsXKKnO/ERc8Lxikd5K
hSfSafQgYCiZxIbI2FUGNE3TJJ/PMzExQX9/f3T9xdll9YyQ5ShrcY/ICUk179c0DM9jh20zO59n
XXV11d/bIqFqXJtTFD48OMjrR0f57Lx5PJZKkawCJvsTMKgXGxwEAbZt1zyPUqlU3QLh5Vv3hdew
qXpotrpfjsd3XfSkRfOc2dhNTfieB/gNI6b3hJ14ns/ceS3MardxXAcUojjeaIPB5Js8PyBlqqyc
Y2METijdEZ9pLiiSt47j+8xKWsxrTuL4/vRAiR8CJT3NNiLQOwgCTE3jtA+9F68MlUKlxr8rkrYC
uC6+qpBotblr9UM89dBqTjzhVFYsX8potsyTm57i2U2bsH2fVx97AiiGfFhTGFdTpUEBSUunOWkw
VqigxTyE5Ovc1FS6kxZPjrloav2EE88PaE+Z6FrIVnlF16HRsz+MFA6yRbwzj0TZOYF+7V14rQnW
54sssxP77NlVT7IFoCoK455Hsgpa1zyfAA/I+j5NWqNkGQVFg66yRnK7wqYehf5qFG+NzEWAcYpC
vuJh62EKjy9JZ5Q6n4GaabPzr39k1+OrWfSm/83jN36N4XUPkuqZyxzV2Sds0T2xbGbaDFgy0w5A
K+dGyJlttJsH+XEWsuSMDO3GzDk/WJq8Im+aJpVKpa70Jm6qKZtrykWUAF+CIKBSqYQmf4VCzftk
zw/B7JClMXIBLLYlm63WS0iRKclyfGw9IEUGA+TiWy7g5UhbeTtyvwRbo1KpkM/noyQa2RzWNM0I
fBHHIcAMsaIvCksZaJI9WWTpTlz65DhOxFIpl8s14yePgyhmZXCq3iRdZrrIaTjyuY+zOMT5q+d1
I7YhM3SEuW6hUIhkS4J1JL4LVkocVJOPWQBw4tig1gvnQLWSqrI4l0PzfZ5Ip0lWKnjVAl8+X2qs
GNlfk/Qjcjm22zavHR3l7s7OMNpxmnQnwQIS16cWS8upJ58S51HTNHp7qyaZVRmVSIipAToVBSsI
wlSciQkSvj+ZclNl4OxR7x4E+IpCb7nM/FKJJs+bBKT2I5W9kTQtXiTEAcqDqfDzA6qeBPsIgIHQ
68J1sTvaaerpQTV0XMcNZTGSKenebtMPAnw/YG5fCx1tKcrOJOuj3rYUia106OwMpq7hej6qIrEi
lFowIKFpLG5N41e5GGoDoMSvAgxdTbbA+lCrIIMfBOSHi5EkLgQnDUrlEslkArdUwVcVlPYEyq4y
yqr7mP+z61m2exPFn9yAtmCA7JZtPLtljLaVh5M99jjGTjqVVkPHzxXB0KuMlKAhYBJ+9/F9aE2Z
5MounhfUjX0NggAvCOhImmzOFqcwEMRrfCBt6zTZOuMFB+WVKsWR7psoUlgFsiXc805C2TyMdttj
LGlOhPKzfQhsyswJv/pcVYGdrsMcw0QXDESpuUHATtehWdOmmBj7QYCOwpjrYakKfTtUhtp8yoaP
FqhRpHANc0mBXMVj60SFeS0WuhpGC28aK9OdNrB1LWJcKoqKU8jyqk9czazDT+IPnzqT4z/776iG
xeM3fA0r1YTvv3DG6HQpQDPt5dHUmSF4OYAhT/Opd57PTRtGpv6vsoVLP3wJ92wO/ze8YRV/f+7H
X3LHMLz5ft780e8//zFwdvH5y37InUPZPb5229N/5s0f/dGUn19oH2bavi8E5KJarDQL75HpfEvi
xVCc1SFABznBRf4qFotRfK8ofsVXPCJXBjPkr/gqr8wSiZvNyoW8bFJaqVSi/QqWgzBbLZfLUVGf
z+fJ5XIUCgWKxWJNsV4sFikUCgAkk0ls2yaZTNYkvpTLZYrFYsSiUFUV27ZJJBLYth2BJqKJ7RaL
xQgkkGVDYv8yICWOIQ42yYBTPLFIHLMYs/i5kMdBvE4AK57nUSwWmZiYYGJigtHRUSYmJsjlcuRy
OfL5fM0Y5nI5JiYmGBsbI5vNRv+XwR1xjGKcxZc43jiYFjfalRkpB2xODHSVyzzQ3IxRjbolxmSS
J6D7u93T0oLh++yyLEq6jiZ5lchSHBE1nUgkSKfTNbK7epHCcQBFTlgSEjPZF2dKNLGiUNB1Rk2T
hcUiJU17TuasvqKQ9H2+MjDAm5Yv58FMhrQY7/1W7yjR81AwxQRoK7+mHpByME3EGwFGe/sVvxd8
10G1bFiyjKZ5C0LQwPMjj5vpQKp62/Sr8btz+5rp7EjhuF5D2WL17ISfU37A0u4UrSkTV5i0xhhx
k2kcAYtaUxhKyF5RG3iEiBX7rmYbVSViWdQkuVU/X33fx7J0Hnv0YW79+Y95+oknuP3eO/jtr36F
9S/X0nb+CbTecBzu2L/xk2SGny5YyM0nnsa6Rfcx/9QnOLPzx7ztd5+l71OfIti6naA1geK6VVmU
UtdEOe4joWkKTQmjocw1BIpCQ8+0qeP59Y3PQ0BYIWVpkaHmK77JgAkBStnF/dQb8Y+eh1aoEGjq
PntWCKCk7PuU/fD6VKpgyBLLxlbViMkXJREqCpaqssSy8YFyEOBIr9EVhRHPoeD7zDIMPCegf0gF
VQnhwphXiR9A0fGY02TRkdQZylXQNQXX8xlosbG0WnlWQIBmmBR2buHer1zAzr/ew73/9z242REM
w8AP/LqMxjhQXc9AfaYdXG2GWfJyb5UKudxkukS6+ygu+fT8l1w30x2L+OIFPc9/A45LtuC+uH2Y
aft8AixW8uXCQC6S6nkQyMalcX8Q4dEhJ5zIkwEZzJCL5HhhH5eoNFrBrfmgrgOk1DPXlI1KBTgg
S0jEap9hGFFErwCR4qvzMqgjM0XEuBaLRXRdx7btaLxEX+WJpgAC4sctSxp8348AESG9yefzlEql
GuBJrOzXoPLVlBqRhBNnysgTXjnBJi5lil8TMrglpDjC2DeediMSemRT13hRKhu6yhIvmZUks1Ti
8dVKA6PE/dlM3+fB5ubQnNf3oxU9eSK3v/sVCFNl32e3aXK3bWOpKoamRX4lcQDE8zxSqVSN10wj
X5N6WvZogl697wuFAtu3b6enpye692ver6rYrsv6dJpXjYywNpmMCtE9jk11RVQLAsqqykbbxpLM
OfcnoCwbYNcbj5k2/fjVgCSeD4FPalY3yaTCaXd9g/sPfT3ZecegVwoE7F3xWMtw8tF1lQVz28ik
TRynkeEqEosJHDdgoD1Bb6tNxZ1eUuP4PgNNSTpsE9U0UX0fV2Ig1j5TAzqaLCxDw4slxtU7DkVR
yOeyuPkcuxWfWY9v4NRbv43W/yTeW+EZX+HP285k7aDNQw/8giXWjzn7ZJU7R49jNQ+x8JhxOtZ+
E/OdtzL25Z9ROeVotLESga5N+mfEjivOjEpbGmP5qeM1+bOPEqg0mzrDxXLoKRMHYKrjm7F1nrOG
6pUAmKgqiucTqCrOFX+P8an/QH10M34mAZ4/CdI933uN0LpnxHXxgX7TxCNkP1UkCUy02BEE3F8o
cEwySRmwFIUtrktSUZhlGDiEqWQpVWPAUvEICDTo2qUy0hww2hZguOF2giDA0lS2Fx125hxWdOk0
VeOBXX8qQKcqk1IwVTdYf/N3sZMpkl295LasY+OaByGRocskiheOg326OhlxPfM8ngFLDro2vPl+
3v/tNRy/VOeuNVvJOjYnn30Wl7xuERaw7elHueJHt7F68xhtPXO56LxzOHNpK//82a9infseLlnZ
SXb3E7zrkz/n+I98MPx96FHef8UDXHLpu1nRXKsRefyOn/Oda3/Jhh2jkJrFqW9/Hxf/w/HkNqzi
Y1+6i1cdbnLPA+vIVVKc9O6LuPitR2MBmx64hauuvom12yssO+V4JDykpl3/pct4ZHQnj3z4w+Su
uIrXp/7CFVfexs9u+gbDG1bxsS/dxsIFsPbpUcx0F2e9+yLOPbEPKiPcdPU3uP53fyFHimXHnMbF
n/5HFqWnank2PbCKq66+gUe2jNLWt4R3fPAizj1mQXX7jY9BbrndT3HptQ/zy2+9b/pz4GT5jxt/
wQ/u2UAOm+UrjuSSC07n99++kYfGx3josqvJfeJCzlvaypr7/sg3brqXJ3fnINnC6W98A5e88ZCG
536v+wBsXHM/V9x0N48NlVi+cgXm5qdYfN57uGhp68xTYx+CJbKHRaOCuB7YIEtxZM8Ky7KwLCva
vgAvKpVKDfsjzlIQq9JxxohsliqncsSZBdOBI/UKPPmYRSEvTxQFCCIAEOFpEk8LkmVFgj0iti/6
m0gkaG5urvF9kf0/KpUKxWKxJiZXpMuIvsjnS2bjyIwXAaTEARm5EJbZAPJkWfQ1fg3IEhI5Tlj4
q1iWVSOlEuMpn0exP7FP2RdFnryJ8ZWvMflnGXypZ+T7oqXhyIZ+dVa89qb4e8H3crVQqagqPeUy
3Z7H483NGDFWiVz479q1i/nz59cFAeO/1wMtxXkQ8q5UKkVvb2+NlC/uXWIqCqOWRUXTmFMuM2ia
GJ63ZxlOdbIfKApqEGCLsYb9Hh0sM5caPV8OFmCj0SruC9leNIaeh5lM0tQ1C7t9FpVtT3DMk3/m
sTmHMa7q4Sq1qjyn7bqej2VqLBhoJZUycd1pgBImDS4dz6c9Y7CoK4VTlZ9M5z2SMQ36MwkCTWPD
k0+QzjQxa1Z3DaAb+ZRUfUD8Omba8aZqGuWyy9FHHUv/UUew4M77cK7/P/z6tT0cdUIzvWaW+9a9
GXPOe1HXfZLB/oDBpnfzTz+7gb7XvJN7Rs5gQTnLOUd+k86lz9D68ePIXreWwvIFaAWnhnXV6PiC
AAxdxdRVSo6HVtdEPWQSpA297vEINg0EJAy1WpjPzLEaAiaajvOFszEuvgFl2xhB0kT1/Aj0jt+P
9c7flGtJUXCCgNnVdD9HSjlSpXOuK0rEfmwW8tUqoDJgmgSEbBTBwtIUBY1QkhMoYZzw4m0af9BK
lJSAnpRJoCoMVYuk5bOSlD2fkDSjTHmuaKrCeMklV/HpbTJxvACrqZXt2TJtgYOpWzS1mvi+RzUk
a8r1qKkKuwsOqqLQmgjZTgfic3amvXjtFSnDye7eyFDPq/jp1z/HTz9xPA/dsop7dxfJjj/L57/9
GzIrTuGWb13Mxae08p1v38i9u4scv7SFNQ9toQwMPf0Ew7iseWiIMrDx6XVU+hcxNwaUDG++iyu+
uYpTP30Vt92+iqs/fTL3//j73LM5FxbvO9awve8NXHvDTVz7lbN55MfXcP/2HNnN93LplbfQf87H
+fENV/AqtrBhNF/3WM7/5y9wROssLv7Xf+Wdh3dNBQh2rCfXfzbX3nA9V370NH77za/yP5tzbHrg
Bm58wOCbN93Cr2+4goWj93LNrx6dOlab7+XSy2+g+3UX8p8/v46Lz5zPjZdfxm+qkqBGx/B8z8HG
NXfwozU6//atL/I/X38Pi8ef4Dt3bOS9H3kHK5tb+MwXPsh5S1sZHnqUS3/0AKdfcCH3XH8ZP7xg
Bffesoq7hoov/DoYeoLPXXs3c095Az//+oWcbAyxeig387TYD5PjeLKIKKzjMhu5SJBBDflDXZij
JhIJkskkqVSKTCZDKpXCtm0sy4qK7EYRwnE/ABnckAGaeF/i/5f7XC9WWGahCOBByEVkqY2QhAhP
EvG6UqkU/S6YHoVCgd27dzM4OMjg4CDbt29nx44d7N69m7GxMcbHxxkdHWV8fJyRkRF27NjB0NAQ
Q0ND7Nq1i7GxMSYmJsjn85Gfh9i+kKMIoETsPy5VEX4kgr0hgyXxWF45SSaeLCOfFxnIEAbAgqmS
SqVobW2NznMikYjOswyWCTBNxCIbhlED4sisFBE5HGfHxBkw8vVSzwj4AN9MEfW89l/+JwAAIABJ
REFUnvHwXhWdQRCtfNf7eY8FZDUhZqBUwlPVcGJeh1Ui7lURcxuX2cSZJXGD43qAihyfLZha8deK
KGFNUdiSSDBQLuOqajUBNthjsSFHCwex3/frJK2O18vBOClvVEzzHAGTIJZy5Lsh2Ns8u4eOBfOx
mprwS3n0zvl87v3/wY4VZ2BW8gR7iFyOb9d1PZrSJksXdpBMGrgN2CHy+9UqUNKc0Dmst6nG0HLq
e4SnCSxoTpIwdLYXCmw7/Wie/OT7KSdTEFtoUFBoS5soKHs2+hUAq+vit9j03r+e1L+cyYZ3Zll/
xJXc+3A7d64JcHfcxoJt53PNSWu5dalGZvbRrB5dwcW//hDZDT9lifpbWgsVfpdbzM/+5rUUP/Yu
TCWMqLXMcPGinl9SzXlGwdRVpuM1BEDCUNEbRRwDfqBgGSq6puLPMEumjlMQEGgqStmBzgzuJW8C
S0epuARqbaTw8wUnvarHTJzN4VeBknXlMgXPQwcOte0a9pFbfa8A4Eu+j1Ptk6YoqCh4aoCX81k8
ZpBOafjVFPEmSyNjabiBSPWufw/4ASQMjfakHgVpBb6HoYaAj+f7mGpAQtciwFG+/+Uwq6FcZYbE
9Appr0gZjpXs5pyTFpIxwOyZx4BxL5vGS7QPPcC25kP42tkraTdg9utO57F7ruYXa3bz8WPnkfvR
RoadQ3jyoV0sPnYh2c0bGXYW8dh9Qyw+9ngysf20dx/Fld9fQU93G+XcCBWzi7TpMJKrgAlmaj5n
/e1RZEww+1fQb97C5pE8bVvuItd9Mhe+6WgywN9d8D7ueeCK53WsZusSzn972LfMspN5/YIbuPX3
67jkmDSVkb9w6+/u4qwTj+cT/3p93fdveOA2cv2ncdE/nEwG6Hnr+9j+wIX89s5neNVrGh8D3enn
dQ4WJ20q40/xi3vWcM7KQ7jkC58AoFwYqh3bjkV869J5zO7IUC5kKRstZAyX4ecg1WnUB2vd/eR6
juFDpxxCBjjnHWdx15ofzzwt9sPkWI5ihVomRyM/EsGaiKLlYsWWKHY9z8M0TZLJZPRBZ1lWlPQS
9xUJ6nwwyt4AYp9iX/Lf4qaz8clgozQcqE0EkpkWwsBSPi7xN9m7QbBDhAQml8tFTA3BlBCSFcHK
cF038jqR9y88TATYIe9D7pvwWolLcERscD1ASgZL4l4fjca8UbEtJ9sIDwcnRkuX2ULid5kZJMZF
/C4X63ISkTj2eAyxLAOTz8mLUmSKgv8Fpt8E1RVIRQZhqn/bm/daQUCL5/FkIhGyC2PyOVHoC9ZU
XHpTDyyRWUY1RbQEPMrXRiaTYXx8vC67RFFVLM9jKJFgQS4XMkQko9eX4nK0kOHJTLuDIRa4YbEl
Mdx8X8gD6p/7RtsAqqk2YLc009TdhW7bBJ4XGruqKvgeHVYKL/Cf23b9gMAP6OpM0zu7CQjCBBu1
sTdQJKfxfGxDZfmcDLqq4FbfV5cpUX39QFOStoRJyXVptxNs/9KVpPvnYVbKeBLryvV8WlImCUOL
VuanPS5FIfB9sHTUwVHSl/49wQUuK5IK6R1v5u5dGm9bE/D2U9/EWaP3c8WGbk4YKPDgnf+KvWgJ
R5YUfjryMIt2HMbW0RPZkXodI0cdzuJnrmPxbbfjvO61/Om22yg7DieefAqqqk8jswkwdbUuLiYv
PMTZgPXwXkNT0VSFwJUYSq+AhafpWCA17Ao/QNFVlIkiwYpe3M+ehX75LeBPPusD2QemGu3rNrhG
46zZyNC4CoIFEvjhVtkjiep1K+Q5PqGER7CKyr6PrSg86zg0ayqzdINR1yWlaQQBPOtXOGS3Ta4F
xjIBZqBg62oEhgTVxKU4syT8f4ClKTw7VqY7ZWLpKn4Q0JE08IJqaFUQ+pnUu4dURcH1w9d3Jg3c
mExnps2AJQdPM3TSxuTPlgE4MDyUZWTzGs547wM1L185lKP92EPocW7loaHd/GUI3viOV3HbtX/g
saGt3Dukc+aCjjo7qnD/L77D9b/6CzmzlYULu8hVKlSorriaBpHqxTQxzbAfI0/sIN16FJEgJp2i
O/38om7S6VbS5uR7021pciN5eg5/J5d/LMX1/3k9F3zvG6T7VnDRpy7mjGW17JSRLaOku46f7Asm
bd2t5LaPTnsMz/cczF56Cl87z+YH/30b77rx/5HumcvFF5zD6VOsRlzu/f2t/OCODeSMNIv7W8g6
LhXcF3wdZIdypDvS0TFbhk1P84y9z/4q9ITkRBQ+chEbNyycEksnyTIESCInyci+H4J5Ytt25Ksh
m7jG6f1i+3IijSju4zIRmX0Sn8TUTgqZsp84W0b8LCjWgvEg/i5AFXniKEfpCj8IsQ8BjIjXyH4f
shxJ9kUR4IO8ii0zgAQwIkAS2URXfn08PlgGf8Q4yjIf8V2W3MRjY+M+IZqmkUwma2RScoKPDMbF
pT0CKIqf70Y+GfL4iSI9DpYcaIlEPb+d55N+IybKnqJQrjIuLN9H3QOIIEAaT9No9jwCRSGn66So
lSiJc+77Pk1NTTWMkXpAifhZPBuEH5GqqpRKpWjfMrglAMLx8XEymUyUjiNfF7qiMKHrlKtSnI2W
hem6cCDSgp7n+d2TzO9gKfgA1q5dyyN/fZQzTj8V27LBr0RFTyMwMs76iiQ3Pd3YqSQEAb6QrEjP
D9f3pgUV489v1/UxTZX+3hZam208TzyHlIaSN7Fd1/exDJWV/c0kzWryTZ3nRVx+M9CUrNL8FfTA
Z+UHPwmui5vPhqBP9T26pkTyG4IgihyeZsBRfA8/bZG+9DuYR27EawarGLB0Pty+to1jkr14ax/h
6pF23vLOD3P3mv9hXfYeHlF+zZuCsyn5a6D9VJ4d97Bzm+gc/ApNnW2Y659g9LRT2fLM+jAaNnsM
rW1teK7X4NmloKnKtFhl/DNgyv8hMrKNXw8H8+q/kCnVG696oLlpalQqLoqhoYwX8U5dhjI0ivad
26A5QeArKAH4BBiKwrDrMu55LLQsypKkpt7J8gELeLxcptcwyKgantQHDTBVladLJTKaRoeu4wdB
aL7t+4x7Hh4Bc3QTpwqmZNQwvWa769KnqmRUlRZd4/5sns4hi0KzwnjeRVGgUpW0dSSNMFq4zv2o
AF4AczIWqgKCS+NKUhoBlMhjJ6f8CDPZuky4ffw8nIkbngFLXtRm1flbe4dNz4K/4adfeF3EEsmO
j0IyjWXAyT0uv7/nYXK0cl5/L0PNLr++436Gkn0c1ZGYsr3H77iGa/7kcPl1N3Bkd5ryyKN88B+/
WvOaehBIui9N7umtVEQ/K/mQjfI8Wi43ykiuwkCbCVTYvCVH2wkpstu3kD7kNL513dso53Zw69WX
cc23fs4Z3/9wzfvb+tLk7pT6Qo7tW0ZJL0gDow2P4fmeg+zu3WQWHMm/feXVlAuj/OLGG/nOj+7m
9EuOqXndmvt+w3cfcvnaVz7NUR0JyuPP8p7P/nyf9CHTkya3Jhcdc9kpMTzu0j7zvNgvH/Tx5JRG
qRhKLIJUBhJs28a27QhIiCeWxJMk5KJXFGPy/uWVcCHZqCf/kY+hka9AvclwXMojCneZVSJW3s0q
2CmzHuT4Y6Si1LIsMpkMxWIxeo/ov0jCEX+XY4aFz4OIXK4nYZATYwSzRE6IEaCJHPUbn0gIQCue
cCSzNeolIMUnJfJ1IM6rDHbI7B3Zr0QGfeSxjzMfxLZkDxPx3vh1IptwvhhSnDho93wnVQIosX2f
qzZsYNgwuHxgIJxw7gEwURQFV1Fodxzyuo4fA63EWJbL5fBzpa2tIatEJDVpmsbIyAhPPvkkfX19
zJs3j6eeeopyucz8+fOnACUyuNLX10c+n48AvxqWmqpieB7r02kOHR/nWcvae6PXFwlQni6N5WAC
zn3fZ8WKFax9Yh0Vp4LqVyC/C1rTDb0q5MLQd11Uw6C5q4tURzuqAhXNwtV0kuV8WOhQ31ugEcgR
Pp/CZ0Vba4Le2U1Ypobr1vcaqdc31/exdZUj+5tJWQIoaXzNiQJ4UWsKrfp+tZom4o0Mg6KgVsFH
kcbTnDQxdbUasVxrPC6eZzXPB98H04CtBdKPXsODp3by8FNn8obmH5HK+1hL3sUbuvq47A8Xs7Tj
UO7/zX/w+re+hdExhaf+uoXHZz3LV5f08Je//JQb797N619/Bq858vVsvet2vMeeIKPC6Wf+Hdli
kfb2NhzHOwDzibAYVlWV/M5BEhPDKNVi++U8R5quYFaqzCsRDx0E9QttVVEoVxw2bdnJvP4uXN9H
0VSUkRzu3x8HJQf9mjsIWlNhMhTgASlNw1JVXAmSkRk7uki9AQxCr5LFVd84v4pSaYqCE/hsqjgs
sCw6dD2SUz1RLqEApqLySLHAIbZNvxECJYfaNk4Q4AKH2DZu9ee0qrE8nSAxoVIe8RjLgOIoNNla
NWo63Gcg3UuqFFssDFoFiyR+C9YwF4MAQ1XYnqugKQqdKQPHC3CDAHMakHRfPA/lvnqB6OsMUPJi
tJnoYKnNXfEq0kMPc9XvH2VbociTa/7Muz55NT9YNwYYLD+2h4d+/wDlnoX0JDMctTTN6jvW0b7i
ENqNqdurjOQxzRRp06RcGeG3P76ODfkcuT0wLxae+Abatt/ONTffy9DIFm699joeaeBZgmmSNh02
bNlJtg6eUhldzzXX3sKmkR3cffN1/GF7mrNOWcrmB27iY5/4Kndv2AHpFG3pFGZ6qufJwmNOw9x8
O9+5+S6GRka4++br+K+1Dqe+Zsl+OQcb19zN+6/4OXduHoWkTXvSxkq2gKGTMVyeGhoj60BlvIhp
JMgYOmUny69v+T1PFUpknRfeh+Urj8TcfC/fveMJto3v4hc3rWL1eCn6/1N/fZDHt894mOyLJsfo
ytKKeoCIXFAJM1fhRSIDJSL+VY4KrhfnK7NKZDNPsU/TNDFNM2KtCPNYUezLkxl5O3syZBT7jhe6
MltD+IXEPV0Eg0MAFiLhBYhAg1QqRTqdxrKsyL/Fsqy6K/dibOXjkvcje6LIXiQyWCKPr5DoiH7J
EzqxnziDpZGnRT3QSj7/chEsH4t83gQbQfYhqecBEY+rlicscYZLPNFBHkvTNF+UyUy9Fdfn3I8g
CNMHPI9Txsc5dXQUXfYtma6YJ4zWbXNdRk2zmjagTDF1TafTzJo1KwI66sUCW5bF1q1bKZVKtLe3
c9JJJzF37lw8z4t8TorFIslksqE5rEiEigOt4vzZwGAiQaCq9JbLOKoa0s9fgowNcV3LXy+G3OtA
fBZomsavf/1rNm/eTGdXD2UPSHdOW0QqioLvefieR7Ktjc6FC8jM6gTfp6KadKz/I0vv/iHlmCxg
b+8lx/XQdYX5A60smNuKoauRfKYhKCkDJV49oKS+P4fMQunL2LRYZljUSgwJVddRJRmWeE8moUcs
LxnItRMWlm1NTR3TNUgZaH9di5LeyngiTU5fRq4Y0NKvcnjhWpq07axceCLrnl7H4oXzuOWXt3Dd
5uvIzy+zyXuUc5/Zwur8cjb3wmP2Vv60Pk1y3sd4bONarr/+elzXZeGieZTLTl2Qb/JZGuC4PtMT
YaZ6RtX8nyqzpHotJdtnY2XaIPBf9iBiMI1ZbzjfCDAMnQ1PD5HNFtE0tU7RDbZt0pRJRqAhEAIm
uRLe/zoJ7+yjUMYKBFVJSwAYikJSVSNGRRCEjBMFsBSVJ8slHikW0IAJz4sYGPI1W/J9NpTKtGih
RCypqpiqigcstmwGTIu5pslbmltYYScoBWEu1VPlcri9IKBSlQf51fcbauhfMmdQpQ2djK2hKwqm
FoKCBceLPEY0FTaOlSg7HhCyRDaOlaopVNN7VgkmSmvCoMnSqjKfgKFsZb8bewtGy668U30OMBNR
/GJ9Ds8MwWTLdCziyx85nSt+dBtn33gTZrKFM899Gx9aEX5Yz126gnbWMHdFDxYwsGIR6f/ezskr
u+tub9mbzuekB7/KBW87m3RrLyedcy5nHXID2zePwiHT9KP7eL74+RxXXP193n1tnmUnvppXdY3W
fa1ldnHSMb1c9eXPUPncVVzYF8NSUr105+7lg++8gXT/Us7//Bf4m+40/O2FXPj0N7jiw/9IzjFY
ePjJXPKpN0ztS//JXP75PFddfQ1v/16O7gVLecfnL+XNy9oY3rDvz8GKk87gQ5t/waWXXUXO0Vm0
dAVfvOAYLEPn5BUdXPG9H1L+wIVccsrreM2an/Ouj15KurmDk1/3N5yz4A6GhnLQ/wKvg57D+PIF
Y/zzjb/g7B/B8mMPYVHzbjJVQOzGK79K5Zwv8OW3HjZz0+yDCXJcAiOvRNcrjmUQRfxfrKAJdobj
OBGAIRf+pVIpAh9EkS+DHEC0vbh3guhvPCkl7lki/61RERs3gBWvFaCEXKTLIIUsw5HHTO6niAmu
51sSB25kzw6xQh9nyQiWiyyjiANRAiCRY3zjLJz4ORUslHgcdJzpIQMh9SQ6oj+yx0j8WOUEItEv
2R9H9japncTXFvzxWGVxvQhATTBcXowJdc0E63kU04GiYAQBuw2Dc5cto6yqONW/7Y0MRw0CMp7H
oGGEE4sY2AVE5ybOKBEAgG3bDA4OMjY2xoIFC2rOg3jdYYcdhuM4DA0NkUwmMU2zLviSyWSYmJio
YaoJ2Zeiqhi+zzOpFAvzeTbbNmY1dnl/rBK+oBWt6n0jM5hkRtPBMnkWx3Lcccdx2OFHEPjydTf1
eGXJjZVKkenuws5kCHwfz3XRgoCiZrBs7e0c9/S9fPHIN2MbiQh8qHsdS+fe88J7fVZHip6uNJap
TcpulD3LbhTCtJykqXF4X1MNUCIAyHoeEK4kv3F9f1qAIErAMXUsQ6spaAF0Q+WpJ59C13X6B/pw
HR8C0A2N/K5xjGQb9q5BgpTCa/qe5Ygtn6KtGa76HZzak8Uv7+YNS85msd9L0WhlYGEz5y0b4Ge3
/RCtuY2VPXNJbd7Ilf/4AxY9+1462h/D+vlclLd+gKRb5JlnNtDTN7vu+MrPqyBQIwnFdOel4vkR
c2bKmIdXCUXHx4mDWbx8ZTiTXj5hsdzILNd1PeYOzEJRVHx/qjRT01UGtw0zq7OlFoihavxadnAv
Oh1l6wjKQxsJmpNYfsDTlTK2ojLbMCj7PpaqMuQ4JFSVVk2lVdVo1XTGPY9h16VFC6U3gcTiMhWF
XsuiWVVxJA8Tx/fZWKmw1LbxgwCPkM2yqVJh1HPpN8zIvFyRDLX9KmDjqD6Zgkr3kMLT88CsKAT4
BMDugktvkxmCHX7AQIuNYOCgQG9TKMPZW7AqjApWIo+Sea123WtxfzQvCGZcZF9s0PKs//rTS/oU
/PKtJ8ycpefZhjes4oOfvY3Lr/tq3UjgmVa/lcd3salgs7gnFGOVC1v46Gdv5e1feA+vqSO3mmnP
r913333ce++9vPGNbwxXwGw7KnZLpRL5fJ5sNhuxLHK5HKVSKQJE6q20yoWwzIIQxqf5fL4m/lYA
KQLsENsRBZ3MSJABDVl64nlexAKR03HkbQ8PD3PzzTdz+OGH85a3vIVsNotpmhHAIpuRin2K5BbB
jhD9EEV53FxUvEcY2opCX4BH0YSzKscRYxj39oh7rwhQQRRp4lyIL5HgI86P53kYhsHo6Ci33nor
xx13HJ/4xCdYsmQJlUqFkZERstks5XK5BpiJgyPimGWgTAbZxGvk6GgxORTXRBzIkuOSZbBMTmaS
3yv2JZ9vGYiDcOU/lUrR0tLC+Pg43d3dfO5znztgk+h8Ps8ZZ5xBNpuNjI2fr1RDTJxLkmdJZIA6
DVBCNSL4tLEx7unoAF3HkFg+4lw2NTVF17Vgaon/J5PJSBbX1NRUA1aJn8X50zSNzZs3s3HjRlau
XBkZFcvGw67r8uyzz5JIJCI2igzyea5Lxfd57c6d3NnSQlkqYA+UJEfc+6tWraKzs7MGsFRVlbVr
1/L5z3+enp6eCBAsl8skEgm++93vTgHLXu4tPu7/6+Ir+OnqCqnmNG7M28j3PFRNI93ZSaqzY1Ja
IhU4iqpRKWVxKwWSTV0Evle3YK/ZblVyk0lbzOnJkElb4d9iEajT+psEUPF8OjMmK+ak0VQFzwdV
nSRpTWeWecSsZjKGXgPsNAJ4/AC6miwyCb0KloTXj64ojBkqq3pnoXd188ZHHyeRLaHaJuM7Rll5
0VzOeeMH+WHXmwluPgnerqKXFf75dx7/9IzCFQsDVh72d1x3d4U3veWd/M9NV3DoYUfRlVTonfgJ
//3MYSw85Tyuue77LOno4rwT76Py8Hyan2yi554/MPrU08wZmDutTCk6bmBwuIDj+XWB3rBYVdme
K7F2ZAKjjsFxJJeYKPPY1gl8zaR563385JJ3odnpl5zMLjzX4fm64cdXcewRGqaZnGJeG/qJGWzc
tAPTNJjd00al4jT0JIlfT5qqQpWRsGPnOLM6mlDUULpVI+8JAgJdIyi7GF+4CfXRLZC2wZMWEQCX
gMGKQ7dhYCmhvEU2aXWE5Lb6tzHXZdB1SWoaA0bVU0di8pWDAA3YUqmwqCq7UYBi4JNStYgdUlO4
AsOeR4umoioqCgobukbZ3RqgGWkCTUdXAlxv8nkwUXZJGRqaWitn2ZOvd83ikgLPjpbpbTLR1Pos
qf1xnRiaiusHNX0Nk7JUVKfIuuQiPvTvvyepc1B5mrz55j+/ZPoywyyZaTMtDjLtfoqP/MsDXPSR
d3D6gjR3/fcfeNJoYW7zDFCyrz8E4r4f8VhQ2UNCZiGI4jbODBCFt1wUCXBAsDbigIrcFxmIEfuX
GR/Rh6a0uhOX2MiFedyPRYAbAhiSpUGiTzKzQmayiP/JSRiyL4gAPoSRrbySXi6Xo4JVRBKLQk0G
qHxpJVOeAIjxE/IGGViRk3jiQJZsxCq8VwTIETderRcLaxhGJNsR+5INef8/e28eJclx33d+MvKs
u++7p3tOAANiCBDgTYKXREo8VzIlay3ZK9P2am3J8vPqXu9KT+Jbr9e7K8v2e372WmvJ2pVl65aW
EuWVeYmkxAMkCIA4BpjB3Gff3XXlFbF/ZEV2VHb1HBQAAsOK92q6p7qqMjMyMit+3/geJlhmgmba
1Ff/rvu3CAiZfWt6odyICWSOOVNepPf3mzVRKRobfgMfkK3AWhYlLVczk3Bu4PMQCcFiFBEKQdtx
qBuyFz3moihibGxsj4GrEIJyuczZs2dpNBq55Ma8/s0iQLOSlpaWclaJ7/t70qOSJGF+fp52u00U
RfkYyplilkXsOKz6Poc6HR6tVinHMZKXH7OkyKi7E5klpsdGkkpcx86jg/tMi3v31VKjTn12FjcI
kL3rd48RtEzxghp+eQSZRDf0Jcnuv4pS4DA1WWdirIxl7TJMbplNIrPtH5oscXiygiLzUBBiN/ll
EFiDUiRScvdYjbrnEKfypteyAhxhUfJtVC4x2o1wrVsWB/+X/x2vXKaSShLLwkoVfjngO+7/EA8s
3Ee4fIRgM0C4XZoX4aOX4Z0jFj/1Lptu67f5VOMdfOy/fJ43H6kyu/3LvGkcLtgjvHX6aX7kt36Y
c9fhta/7cTbkXbzpC/+B8//n7xNIyeGjx+hG0f6GrMZ3TDdKiNP9/Vv0ce3EmXPGICmKLh5bUYpU
ijtFrZD5mSUsLkygFMRxMjAl0LZFzjDJgRJbsLPTIYoSxsZqzM+N8dypK8zPjeG6juFblm3DilOc
egl+/sOIH/5V5PUt8D2sHuvOE4JLUUSkFCO2TStN+4CMlMzbIVWKC3HMgutSsm2OAEmng7TtLKJ7
Zwd8n5NpyjHf50IUUS8AYBXtNdM7TpcsTUf1xkwzTak5DiUlOb25Tfj278JaAPXEJ7DaWyRuAG4m
P/MEdGJJYAscIVCYjF+VgyeDxqp5f5AKDo4GhhfKiw2mkadiDQLFhm0IlgzbsH3T2tzh1/LT77vK
P/sX/4pfaDscvfsoP/uj38myO+ybF7KZK8VFw8395DdmZK9meOhIXF04mEwPXcBr4KJohqnBiqIU
xzT0NL+0Bn2R7kli6H1eMeXH/BwTSCjKd8Iw3KVkJ0ku7TCLefMzTeaHya4w/V5MiY5+jd5ukdGh
J2hmXLAZmauPryjD0QWxaaBryms06KF/FiNhB/Wxfr0GV8x+0tvVRbIGXvS2zP4tAmrF7WUpAV7+
flOaVAQgzMLNtm18389BHd/3XxZgyTd4QWY/eoCJ/n2/ZbccCFOKxLI40O1yMQgQ9Hu9ANRqNUql
0h65jD6/nU6HZrPJPffck7OrihI4E1TV18bs7Czr6+uEYZhHXhejtTUjw3xOCEEqBEHP6PXh1VWe
qVTy41YvIzmO6YVjXk934veBCZxqhoZ5naZJguN5NGamKY+O7ptyk5/DHmCiZAKWGHiv0SCJ6wqm
JytMT1ZwHEGa9hdRt5KWEyaSiie4Z67OeNUluYlsp19ikrJcLzNXDfqAkhuZwCoFgZ8VgLJg+qmy
eBDe+kMfAQnRToToMRiDSol//7O/TqrgeprgdF5L+08+x+FvFzz+9pSyK+l2JVfXYKOVcuTeJbac
RcKxn8Q7+30813oH/2RlnVR+ho/9gMP06r+h9isLNH7vsxx74DjJWoeOkDf02ci/0yyLZjcZKB80
+z2Ris0wRlg3MOhVilY3xcKCO6Se1GPQlNaYc43s3ibY3GwRJylTkw3iOM1v21IqkjRFCIswTBgd
rWD3fD0cx6bdDtncajE3O0aK5Pq568iSR+nHv5OJn/1dkigB18aSGVNk1HYoCUW3J5txi9/hPbDk
z5pNHqxUeK0QXFheZvmnfpLmj/04T5w/zwP/9t/ylY/9vxz7xCe56jo8F4bUbEFHSZY9P2Nx9T5H
9q6fZ8OQ+R6bRSrF4XKFtNMmdBx2fuajPPHgWxj1Akpv/gjikd/D/fqfYG1cxnUdznZspqo+voDU
YO5kzJvMFFfe4Luzz+y5p+N5sb8b9vMfGwIlQ7Bk2F7gNn7kvfyn33rvsCMZocxDAAAgAElEQVRu
u7m8/X3fzdvf993DrniRvwyKjI9ioT3IoNH08NBghFnom8W8yUTQ2yl6gujXm0WIKb0Y5JNh+pYU
v1RNM1b9uSYDRIMTJthh0u9NNobJaDGP3XyNfuhj00wPHTdsJgCZgEvRb0X3o5mgYDJv9HNxHNPt
dnOfkiiK6HQ6eTyx33PCLxZ3GsAolUq02+28f0yfFqtgDKoZI7pYVErhum4uhTFBIb3fZmFc9HMx
k330vvm+n7+uCJRpoK3oqWMCLBqA8n2fKIq+aZOZmxVXL8b2VE+mEyhFI035ehDga5q14VUSxzHV
anWPB43uN4DXve51+Vg1mV1F+ZV5f9Cyqa9+9avcf//9Oaimt6G322q1BhrBelKy6XlcCwLubTZ5
pFajnCSkL7Ec52Yg2CAg91uhKXqAB5k3SanRoDE/h+N5SM1K0+ya/c6VZWnYL1+V1i1JslSayYly
z5fEIU1l5k2iJFjihkChZpPEWY4o86M+R6cqeI7ImBLcJC3HAots5Xiq7HOwUSGR6pau5QwckFQ8
J+spA2xQBkusu97Zk56TpinrcYhnO7TaTf7sgbfw1v/0ZdK7uxy7x+b3n/8enn66TnnkIDP1/8xU
qc2pM5d5cPVfceJgwsmnn+S7vHPYU3Xed2GbrZMH+d2/9j2MtrZ482aYp2ENKvBMBpEQFlEiaYXJ
wHQgDYDYlsVmGNOKdw1Ei4CKEBbdWLLZibGFRXwHXQVF5MeyoBsmnDt/nXvuWjDmNP2gXJpKGo0y
o1aFOMkAk7HRGmmazVHCMOmbW0VRwvpOh0lboO6aJf6J9yF+/nehx1rpSIlnWYw6DtfimPU05S7f
J+ztoU7QKQvBf9VoICyLU2nKzulTTIQh9X/+Szx08SLOsaOUvvYYbqlEgMW31WqciSIato0ATkcR
TSk56vuUhCCwLBzgU80d3lurE9sO6c424eQ0j/3U/8z2/a+jfOpprFodNbaIfP9P0n7T9+M8+znk
Y3/E+OmvYLW7yFIFbLd3v5AZUBelWEDZ8PwZ+F3X97fsnAxZHkOwZNiGbdiG7UUvAjQ7ALJoW1PG
cKO0lKJ0QhdSRcBiEGOkyMLQz5ueJaZERxfgmg1iFtVFQ9fi/01TUdMQVAMh+lhMRoYJqniel3+u
uV3tp6JlQqY/RzEyUq+26z7eL9rYXMXX3iZammP2SbfbzcES7Q+hXwtQLpdxXbdvG7ZtUyqVSJKE
UqlEEAR9fiFFnbYJTpnyIn3M+lyYoIUJggyKWDXNaTVIY77eHEdmP5rvF4VIXJ26o+Oru93ut8zk
KV/xFYKJOCYWgpbrUhtg2lupVPakFmlWzqlTpzh27FifJ0/RvLloiGwCp6Ojo9xzzz25V455frWH
y9raGiMjI30AqRCCRAgqacpTtRrvWFnhqR67xIyX/WZPiM1ipjj+vhUAdXosi9HFBcpjY7mp6+2c
n/3MW8dHS8xMVSiXXaTcfd6yLERQRcYhytgWhgxAr6AnqWKk7HBkqsx4xcuekzf3N8klbKlkquxx
fLzWZzB8s+PSPh6BZ7Or5OlnwVmA5TgDt20Lh1TBdLnK/T/ydym//W1Yv/Tf0517ivTINcbqLerl
y3z4dZ8G+WlaJyocP9Dic190OXLXz/Dwb/19olMVPvOev0P1V36M1p99nJmtLsL3UJ1w4Bjtk672
/r7RCkllz1tjwDnT1+PVVheJwi4AWLnkxLJYaUd0Y4lnW3eMH2ZREqvTbwLf5e5j88ie7KvRKBvy
PKsPMEmNforjJLv3pZIzZ69x/O5FymU//86rVgOm5saI2xHxO+5BrL0b51/8Z9yKz+U0wcfCtSwm
HIeVJGE7TanYdmbybVm91Cl4pttl1nUZdV2SMOSx//qv8c5zZ/He9jb+/dFjvGl7G29mhok4RloW
B3uLFikw67o8G3YpC8H1OOZUFPKWSpVp1yV1HILmDjuLyzz6P/5TmkuHcdeuMzK7gFIQ7Wywdu0y
s4fuIn7or6Ae/BDWma+gnvg48uRnEVvXUK6HcgIsIQiTBGFBxcswkBtHNA9ZHkOwZNiGbdiG7SVu
uuDWIIQpI7lRrKvJyNDFuC6q9ZeYLpTiOO7zADHlJRqE0IapJpPEBAlMIMb8ItUAQtGnpPh/873a
s6PVau3xSin6YWipkVk4muavej93zQnlDVfmTaDE9AuxLCtnWOj+BHIp06BUoXa7nTNKtAmvTuIJ
gmAPWKJlEpVKhVarlbN+gNyA1pRKmKayuulzpY9Vv04X2OYExvwcExzRzQS29HnejyKv+7AIWGmJ
kGlU+s2eQL3U208si5koYt3z9iTgpGlKs9mk0WjsAUpKpRIrKytIKWk0GgB9Ud0mC8Rkc+kxrlsY
hiwsLLCzs5MDruY1Y9s28/Pz+X2myFZzpGTLdbnu+9zTbvMVw7vkZTFJM/x/il5JfV4eA2Qer9TJ
fF4oS4lVKTNx+BDC83fZJDfwD7kVkKRe85merNCo+SjIU256L0ZKyc5TXySYPYhbafQZwwoyKn6U
Ksqe4OhUmfnRAGFZxLIX73sLshuAMEmZrgQcH6/1xQ3fClAilaLiO7i2hVTcEoA2aGzESnH39DzR
wUVWH/xzqv/XL/NXvvqrOOmnwAdGyJw7Oy2SHY8Huot0xj+J95Ff5ctTYzTuP8E90+OcPbXAk9dO
8urOG7BtZw8DqjhuHSHY6cTsdGPsfQxKpZTYQtBOU1Y7Ec6A15nHcr0Z5aDWnVrH9stBd59P0+z7
rNnqUquWcjPQQVJXpRSe63D8rkWSJM3/Vip5VKsB3U6MJSyszTbi+96Aur5F8h/+gqlawKlOh45S
zLsu065Dxc4YGRtpSldKFjwPBYw7TgZ82DZpqcTsv/nXhF/5KsnFC3z/H/4B63/rb7G2sorjOJwN
u9wXlEiAdpoigWUvuzZLQjDruCgh8CwLb3OdMyce4tRP/2POrK2yvLmB8jwSHRXvulRHxkGlJFvX
uXrlMvN3v4744OsQW1dwvv7/4Xz19wk2L7C106WjPJbGq4RRsnvt0m8Ce7sLCOoWr+X9Xj8EYoZg
ybAN27ANW/5loMESIPd9sAoFly6uimCIGWVr0vPN1WgTqAjDcE8Mo8mqMAvoosGqWZwnSZJ7epie
J4M8PoqyDbPgN41aTcNa07xRy1y0pEYDA6VSqQ/cMMEPMzFHP4rRuUXJiwkE6OZ5Xs760bKiIpNE
S346nU6fX4Q+Z+b5CoIgB0aazWbuK2NG+JoARxHU0PtdNMA1E39MSY75mqJkam8ChszPq1mQFsei
/hwNlJipLqb051vmGu7100SScKpWwyWTRehz5Ps+jUYjB/DMa9l1Xaanpzly5EjO0jGTc4oAqT5P
+lwVzZ7DMOTpp5/m+PHjuaGr+TCf02NVKYXssUuerNd51/XrPFMuk+q0Br75pnrm2DMTrorXycuF
CfNCFoReuUz90DxuEBBFccbWuA2gxOyTJJVUSh4z01XGR7J7USr7ixQlJU5QYf30Y/ztf/K3+P3v
+nt0vucf4G6tg5ONlzhV+I5gYSLgwFiJkmcTp5L0NtJyVI99slQvc6hR7mOs3Mr9Q8tTAi8zKkZK
rNv0sTH3p5PEWBsS1ajQ/rkf4/qZ/47q5Ws4V89jra8CirQ2ipqbh0MHUHMVdgS8JoFop4uVKP7L
1z/Ov/7tX+LhE+/iyPEjdNphH7jc7xMhCFPJyk6Y+80wAFzBshAWnNtqEyuFKwawSnrH3opS1ppR
BrzcwTmrg9gO2sw1SVJWVrepVUu4rk2S9Bsfu67TW8jp+X4VwEcpFalMe6dD4XouJ7/8HHMfeZjR
WBL+P59jdKzMUeHyxzvbHPBcxm2Hc3GcgXdCsJYkVIXgniDgibDLn66u8tYHHqBiWaz+w3+IWlkh
+aV/xvXj97L9sY9xcGKCe/yAppSUhaApJZFSHPJ9WlJStW3GPZ/tsIvb7XDm+3+IT73lXUwFZQ7O
H0D17tXkprYO9dFxpExxvIDRqRlUdyczqS01iN/yg0T3f5D1x/6U0fNfZPrUF4i217G8MpbjEUmF
g8yH5O3cS/O5Ww643PhebL5eWOQSvNsYDNl2er/fMUY9Q7Bk2IZt2IZtt2m2Qub4Hu8BNIpyDPNh
ppzo4qtY5OoVWe1tYEprNJtDF16mkarJOCh6pWg2ihkhbDJJzMmJGUWsm1mQ68lksbA3Uz80WKIN
SM2YXPPzTEaKCTCYnz/ouIpmnLp/zM82I3fDMKTT6exJwdGAi5YI6f3V2/d9P/eRKJfLfWCLZmQU
Tf40IFX0GTHlUiYzxOwf/Zn63OjXFiVWJtilx8mgyakZy6uNSX3fzwETXeTrcXnHN6WQlkUgJYGU
bHgeXg8s0aCElsIUr+EgCLh69SpLS0s5oGeCJRpMLKbhmP4+5vNSSqanp7l48SLtdhvP8/Jt65/V
ajWXuxVlfY5lseO6nK5Wef32Np8YHaUax6T0r/691CCECYYW721xHPMnf/In1Ot13va2t3HhwgUe
e+wxvu3bvi0HJl+poEkOLPc8bLTsRhcFt8MmSZIUz3WYna4yNVHBtq2cSbKbhtH7TCGQSUh1eonf
+uv/iPSeh/DCNqkQJIkicAULYwGLIwFl3yaRmYzGwsoLzGK/79kfKbEti7vHqsxVAxJ564ySfoDf
ouQ6u9Gqtzk+TWmRwEIKgSss1p6+xAM/foQfePeP8M//wf/GWi/y2FJgJUCYwGYXWyk6PaCjGaX8
ve/6Md77mu/iwOFlwm7cxwLdHcNg93xKrmx2kJI9XiUmq8QRgs0w5non3JdVkiUCwdWtkDhRuI6F
pV6pjKrBwNogULTIQmi1uvi+x91H54mTlKvXNhgfq+XfnY5tc/XaBvV6mXLgIZUiTWVfco7see/o
79hUShYWJvCilO7feTuVyxsEnzvJhZrg9eUyvhBs9b5Llz0P27L4WqfDq4KAS3GcXRtBQPj88zT/
zn+LKJcR4+Ns/cRP0hGCYxMTNJOElTRLOWrYNnOeh6UULSkRQCIET22sofyA9R//Bbrv+RCH4pg0
jnbNWvekWiX5MVRq9Qwc9/zMxyfcIRY2W4uvo/zmv4p19STOI7+L8/QnsbeucGU7YXp8lMAVqHx+
YXErnsH6XIVp5ofiiJszS4RlESaSTiIZCZxcitdPjSq+vwcI9mKTh20IlgzbsA3bHdpMmYkJlugi
Sb/GLLRMtoRmEujCVRezGsAoeojs0XMPYHyYry2yVop+IGaBbRbgJqMF6ANy9Bek3kdTLmPus+4X
baZqypNMSYwGeUzJkpnCU5T29E+2Rd+Ey5QPafNcMya46FGi5TfaBHVQipFuWnbhui5hGFKtVvu8
TwZF85pgibmfWmJhTjh0n5kpQkVAxHy/fs5MSjJXdIsrokWDXw1elUqlnOVjpvbc2RjJrnFlJAQL
cUxk23R6kcFmX2nGTVF+s7a2xtraGvfeey9CiLz/NOikgadBMhwzIticIHc6HU6cOEG73c6TmUwf
lGazyerqKmNjY30sIiEEqVJUkoQnazXe226zGIZcc12cXjTmNwswKRpRCyFYX1+n0Whw6tQpfN9n
fX2dJEn4nd/5HQDuu+8+lpaW9vgAFUHTlzOQoguU/hSaG7NJ9pPcTI5XmJ2uEvgOSc+8tQgc9xWg
UuIGJeR3/nXsboeoG+K7NgfGfeZHAiq+TSozGY4puSmuQu9hrylFKhVjgcvhkQo1z8llO7d7TqRS
lF0Hz9mV4PwlBtku+CkVwUiND9z/YV4zdx9JK0a0o91rTT+EQJHFxGJZJIlkdnae5aUFWu14YKGv
JTVRmnJlo5v5uuwDlOgiMpGK5zZaqL7o5b0msd1IcnGji233bEZ75rmvvDlRll6TMUDkDWUaJsAi
LLhwaY0jh2a4vrrF1laLoOQjZSZH0jHB7U7IaKPC2voOUiomJurEcYLj2DSbXXzfyedBaZr1ba1e
IQ4jUstC/dT7uXp+hQsnL/HGmXHiVDLmOARC8JVOmwfLFepCkJLJcMZtm4pt01YKt9HAkpJQpoyP
jrLe6bCZJFSEIE2gZgvGbJuNJOFqknDM90mFINzcIB6fQv7cL9K699WU2i0uXzpPUK7QGJ8k6c2D
8s5Qqsey2k3Ns22brbVVtjdWmZxbxPV8DszPErU3URMHCd//00Rv+W/wTv8FB574OJz+EiqS4JfB
drPPVLIvynjQ8FKAY8FGJ6HkCEZKDskNSU4WIEhRxNLC6iV2WfQMmgFLSSxSUMnucyhUz4DakhGW
SvMkt2EbgiXDNmzDdocVXZDJMmzb7vtpTgyEkayhgQdTx6+Bkr7JpJE0U/QVGQSk6FY0CTUL7uJn
64LcTEwxjVZNdotmrWgAQG9LMxPCMOwzVzVjj03vFb3v2njVTPMxiyrTB2UQfd/sf30sZjqNBkm0
F4lmuERR1Pd3/dOMHy76pGjASK92B0FAtVql3W7n3iVmHxdlUOY5KIIXJiPGLHjM95kSJBNs0o8i
kCYL0YLmedUSH+0Zox8aMHFdNze6vcORTiwpSSyLo+02ZyoVbP18byysra0xOzvbZ8qrr4V6vc7S
0lIOdGqgRIMmJrhirlDvB5aY0pzLly/TbrcZHR3Nr58kSSiXy0xOTubXjXnNKKVQQuAqxVdHRnjt
xgZ/MDmJJzN5Bd9EwMS8f1iWxdjYGEIIRkZGePTRRxFCcOXKFQ4cOMCZM2e4dOkSy8vLe2R1xULz
5Q6km+BO8fkbASVaclMteyzM1anXMvPKONH35L1ARn88fM/MemMdz3M4OFlhfsTvgSQMAEnULYEk
JcdmaaTETMUHMn8T8Q1IpyyySOWyb/fkKxLL+stHSWcMHkm5WuFXf/b/JlbQ6kbYBkOwWOaZ+x7F
EWGo+sDNHJQCHFvQjVKubnWJpY5sVXvGZe5zJSyeXW+yEyW4tti3nx1h8dxamzCRxuteqXOibNys
rm3TqJf70gFtW2RStL7v1p5ZryO4564F0lQy0qjQqJfxPJc4TgDF6eevYFkW9XqZWr3MTrOD6zlI
mTFYt7fbPPr4Gd7yxntyg9jnTl3m4PI0W1st6o0KTpyw49mUf/qDvO3/+DjtC2v4JY+zYchGknLM
D7CB0d59R/bGyHNhSKXnN5IqxYTj8HirRb33XKQUl+OYgz3mmGdZTLkuqWUhmjt03vpttP/+/8B2
fQRvawPpetRHxxG20zfPyhmgnkfcm1Po69B2XDbXrjM5u8DV82eJoi5HXvUACBsVdXDSEGdsli3v
O+DoO6ld/hrW1/8U5/QXENvXwA1QbtDrcpnJX/ZJzUkkzNaCzAtJmQSRXsIWqscGSbGQIFOqtqJe
tkjSEAeQlgdKYCGRVplENIjtyfy6C515pOVhkRCrSXbsLkJ1gNKwsBiCJcM2bMN2Z9VbVl/xqiUa
+ndTCjJIjqOTYjSzwpScmMWUyRApFuQ3m3QXWSmmbMNMczEL6v6Jd+bFoM0lgXxVWxu06iLbjDjW
QE0Yhnm/aENUkxlh+i8UpT4aiNKAjZkqU1zx059rAiP6/5pNosEb/ZzZpybDRTMsiqZy+vxpNoYG
GKIo6mPqmOfcZPSY568oHSqmG5lGoEWWkAkMFWOjb2S2VvTP0cW9luFo4KTZbH5rXLdCMJYklKXk
YrlMiV0JjhCCsbExfN/PZVkaMIvjmLGxMarVav5cUc7ked4e4M0ES7R0z7xO9bU4OjrKyZMnGRkZ
6TN71fvQbrdzAFKPESEEUgiCNOVKELDm+7xxa4vPNRrU4pikR/V+qQGTYjGpx3oURczNzfHwww/n
ffaBD3yAs2fPcvToUZRSnDt3DsuyKJWyCfTW1haTk5OMjIzcUZGX5rGkqcS2LQ7M1ZmcqGALiySV
GbghBjBAiuk2Mvt74NpMj5VYGCtR9sQtgyTaUFMn5aRSETiCg/UyM5UAT1gkKnMZEN+AmeMukABl
3+l5T+wWzS9EP6ZpykY7wsJCCPum+5hLIy2BEqoPTpFKIXp9ttmOWNuJUD0gZD9GiVIK1xZc2Olw
tdXFtW8g07EF662YSxudXPKgvU5eyffXra0WtWoJIbJ5RbPVYWOjyZHDc7Tb3T0LA1evbTM+VstN
XTMJ5C7TdXpqhFLJpxtGrK5uU6+X2d7pABmbqFTyuevoXD6PkVJx6OAMcZKyudVibLQGwiJe22Fz
vEzt578b6+/+ClGc8vVuyLzjIHqF/GqashaGvKlSIbEs1pIE4ThYQnA9ibmWJGylKeO2zdPdLsd8
nxOlEjUhSJTCsW0aSmFtrHPxb/xdPvuB70VtbTFfrhDZNpaUBOUqSsnMr0bfj4UgjWOunj/D3PLh
zKg5Tem0mqxcuYjjelw5f4bjD72RS88/x9VzZ5g7eBiZpmxvbdC9chnHtrFsm/T4O0nvfgfx+kWc
pz+B88jvYK+cyU6QX0EJm11bnOx6ttSuUa5MQywkdm4TnnFFlCghRECahqRilFRUie1plOUhLEko
JklFlcSeRFolUAlS1EhEHWX5vXGtUIj8XKsEEvkElpIM2xAsGbZhG7Y7sJneIbqw1x4WfRMx7S1g
SHFM/5D+CXOaswCKxbbJtLiR5EZPysy/mcCCCRSYBXzxfYPMTvVr9TFoloJm1piAh47q9TwvByr0
Sr3pTaILwnwS2QNHzP3RhaF5LKaERT+0hEE/NLtEgyVFnxZ9nLoY1T9NNo6Z0GMCC6VSKQdmip4k
NwJLTBaOacBqeqyY51H7ZwyKYTYBk6Jkqfj5euyZvixBEPSl4tzpLvZKKYRSdG2bV7daXAkCUiEy
k7oeWBLHMbVarc97RIObzz77LG9961sHAk76McizxByrRTDUZJGNjIzw4IMP5kCqyS5xXZdyuZyP
YxNU03KcapryhdFR3nftGkc7Hc4EAUGSkBaKypcCcDCLIjM2XRe1i4uLfa8/duxYXyHvui6PPvoo
QRBw8ODB/F57J4Al/UW8Io4ltZrP8kKDcsnNJDdSDQQ3+pKu0BHAkorvUqk6LI6VmCm5hHF6Q5Ck
CIzTA1xSpai4NnP1gKmyT+BkYyvWDDZun+GTgxlSUvEdPFvseja8wMCTwB44Dm/lXCgjftXp+Tes
N7s0u0nPyPLGQIln21xtdXluo4UjerIa9rK7hGWRSsXJqy2kyhgmvOKBkgzwO3pkjjjWfhlZck25
5HPuwnWmJ0f6QFQpFa12yPRkA9nrw24YZSyhckCaSkolH993uXptg6vXNrnv3iWazQ7jYzWSJMb3
XOI4JUlSHAc812FldZs0SbnvVctcubJOpRJQH6sykkqSso//0e8h/bFf54P1OleShKtJTMNxOOb7
xJ7HmShi2nW5N8jMW6d787FPNZu8r16nbttspClf7XR4Z7VGR6bgOIgwRCrFs//wZzn97g9S3dyg
OjNLnKagwHYcpExxPZ8kiUl7i0/nn32aueXDVBujhN0OO5sbTC9kckTXD1BSEkch3VaT8enZbOEq
jnF6gPrO1gaHj59AAbK5ycVTzzB/7FWot/wg8QMfxDn9BZzHP444/SXsaAtLzyGwUZZLKqqZVMey
SewxEjFKbI9jqQRpBcTOHF1rlK1Ol9HGKKlVJhVlsDykgjDuEHjlbByoNB/zFhJIM+aIAdBocFZJ
G0slQxnOECwZtmEbtjsZLDF9Moo+JhowKBbdvu/3FbkaJDGZI6Zso/icWfCbjI7ixM1kTpiynWKi
jPn55uv2i3PUhbdm0Wj/C9NrxFw50t4lrVarzyzVBIqK+2SuzBcjeYsgit6GZrBo9ojJJDHZGOY+
akBIAwaaFVBkluikozRN8+Mtl8v59kzApOilMihdqC/+1ZBt6AK7eHyahQO7UcUmgFQ8j+bn6P7T
YJAZcRsEQZ/Pxh3fegWJC0zHMV+u1QiUwjLGmjk+9bnxfZ9Wq8XBgwep1Wp9YIkJmOhxJISDbQs8
LyuYkkQRxym27WDb8R7TYlNCNjo6yrVr1/LrTAOR2i9Fg12alVVkIflS8qmJCb7z2jVWPI+ubWNL
iSSLs90tDNU3HC95q68tmlcD+X1iEFCrf19aWuLxxx8nSRK2trYQQjA5OZkf850ClOhkj/nZGrPT
1QxwT+Se2NRBfaSUIpZZus3BsTK1qTq1H/oAkVdi/d/8HpWwlafM7AuS0JPa9J6rew4z5YDJsodv
CxKpchNXYchSvjGQI/ucRsm9ZSDjdoG5G/1+KyCJ9mBJpWKjE7HRikl7fiXmewYBJa4tWOmEPLvR
xBbWHjlPX/SwI3j6cpPtToLrGDKdV2IaWc9rQ7OewjDpG7+e5zI25nD56nqe0qLTbS5eWmOkUWF9
s8n2Toejh+fY2GjR7oRUqyUC3+OZ5y5z/fomrzp+gOsrWwS+y9KBKeI4IQg8Wu2Qg0vTbG61OHdh
hbuPLbAwP87GRpOnn7lAux0yPTXCyEgVy3Xorm5zZaHB/I++h2f/1z9gYqxGYNvESrHZS8OpCIEP
tJTi6W4Xr1Ri3HF4qFwmVIpIKc5GEXVbEKNQjoPbatIZm+DrP/4LbL72LaTnnufJr/wFx179EOMz
c1hYbG+uU65UOXvySRrjE9RGxpBpysKhowjbZnxmju2NNWzb4fxzTzM+PYdfKiGVwg+CPfPJNEkY
m5pham6RsNvJxrNts3DkbixSrPYmyvaIX/Ue4nvfg3v960R//Ecka12UExDZMygryIARJApBKmpg
2SgNOvaADSlDkmiN2JkCmWCp7IFMae5cpjK2iJKqZyarr7viz+x3ZYFlZSavDG1eh2DJsA3bsN3J
ddduwowuAMIwzFfoi0kzJiNDs1HM95psj0Fmr8W0mmLM76BiZlDhnU+UB0TUFt9fZJWYrAS96u15
Xm6i2u12+0AQHXvcarXyfajVan0xq+YKvOkNYSaRFA0xi1HHpi9JkVVisj/MBBq9n5pdoYGSYuRr
0RxVyy/K5TLtdjsvaotSKXOcFBN6ioBJ8WECQuYESbNezFSV4uv1cRfOd5YAACAASURBVGmAxDSv
tW2bIAj6zEO1ea0Zb30nAyWxZTEex0gh2PI8qpaF1RvXWi7WaDTy/tFjdX5+nmq1CtDHJjGlOI6T
AU+Nhk0UCTY3BbYNlYqi0ZBsb6f7Gr+a6Vrr6+tsbW1x+PBhoijKAYdqtdoHoJnstHx1WynajsMX
x8b4jrU1/mByEmVZiF4CULHQu10Zxe0WsYMe+looRoma4Onhw4dRSlEqlRgdHe2TC75Sx2k/aCTx
PJulhQajjYAklbnnwo1YIABxKrGFxdJ4iQNjARXXpuUIdu55DfgBNYOlUDSgzlkkPVNU1xZMBS6z
1YCG5+L05DaxVAPf/40CQ6mUlD2Hkm8jv0keOoPGsF7lFpZFkip2OhFb7Zi4lwpiFwAnVZC0AXi2
zfmdNqc2W3sYKHvYJ47NxY0OF9a1TOeVmvzUH3JsoZBkhq0UrmXLslhamCSKk76kp+WlKZIkJeoB
H51OSKXiMzlZJwwTVla2OLg0xdzMKOcurPDa1xwhjJKMlQSsrG5z9doGRw7N8uypy8zOjCKExeNf
P8uh5Wmq1RJr6zuUyz6WBVeurjMxXqe0vkPy4dfirW8z8xtfRmBxMQ6xHYvAElyVCVdkwmvLFdwo
ZC1NqAqPedflfBTRsG1eXSplqTe2jbexzsZ9r+GZn/tFdkbGEGsrNCamePDt76G1vUnYabOztcH5
Z5/hxBvfms374rhnippJfdI45tzJJ5ldPky5WsMvl3E8LwfxdJpdca6XJglJ3J/gJDSgbJH5ArW3
ESWXnbUJtpN3Q02DGjL7OwYIo2JQEZhnV2VStYn6BGka9u4t2dgVtsvcxCGSNLnlCHBrGBU8BEuG
bdiG7VsHKCkyO7rdLqVSaU+6jTlp0rGwQogcKDFZGYPMPIvSEd3M/5ury6Ykwyzgi9HARaZJkdpf
nMTpAtJkK2imjGZYDCoCwzDM99+yLMrlcr7y7Hlevj0zitU01zSZOkqp3CtEg1K6vzRQYibfmGau
us9M6YsGQMrl8h6/Et1vej+0TEhLcTTIos+DmY5TTDMqesOYwNggCY1ZcJq/m+fFPG/FybkGd4qJ
TCaTRhv1avnInQqW5NeElLRtm0PNJlf9TEctCoCVHo+6ryqVCpcvX2Z+fj73MtESJhMwcRyfet3F
shy+/GWH06cFvp/1Z7erWF6WPPRQiu8Lms1+JlDxWj9y5AgnT57srcC6+d8bjQZbW1v5tWNer3kS
hFKU05SL5TLlNOW9q6v8weQkfpoiyMwLGVDwFcfafkW+OVn/RsCTG713NyVEEEURBw4cQErJU089
xQMPPJDLE1/pQEmcpIzUA5YWG/ievT+bpMDkSHtMlNmGz9J4iXovrjOUCj+OsX7mn2KhcNstZME8
ssgiqbgOUyWPybJPxbUzU0f5woMk2T1X4QiLybq/W9AJ8ZL0+f5jUa9pK+JU0Qpjttu9yNgCSFIE
8+j1pTaGPr3Z4txOG9vayyjJr3Ol8BzB9e2QZ640cexeOs+AwrFo3v7yhEoyGZiyLKRw8iJYCZGx
EQoAkwZKzOdOPnuJg8tTeG4G1EdRzJlz17nn2AJJz3MkihMee+IM3/bO+wmjhO2dNvVaGccRbG23
OXZ0nlLgMTM9Sr1WwsLi4NI0vu8hpeL43YucPb/C1laL5aUp1tZ3qJYDSmHCpXce5w8feYbR9RbH
pE95J+b5nS5jWFzphLQjm7e7Pldlym+srvH+0RGqtk0ETAUel9sdzl2/iv/+7+Gpv/+POPnM15mb
bFGbmCSOQhzXZWZxmbVrVxCW4DUPvwvPD1g8fIzrl85nqTBkjD9LWFTqIygpSdKUoFzGtl2uXTyb
MevmDhBH4R726qD/FwE6u+LT/NIlmn9+DuEKLGH1sJBBzA8NfQkd8muYTyd56g17nr99H6NhG4Il
wzZsw3YHNzPi1UyV0QaGuoAuMkPMyF1zlU8XSkX2g1lM6YfJaDFlHcWJbfFvg15rAinmdgeBLfp5
E7zQTAUtT9EpNMXiSEtkiqvDZoyymRxkAhlFA1QNLmjgw0z2KTJMzHhd3cf7sTo0s0Sfh/2OWR+n
Bko0s8b0nSl6y+g+LrKIihMdzVAxV4kGya6K8h4TMDOBJ5OZo4GoYkSyGV/9Yk1yBhUPL3WMreox
K0bTlJk45k9HRykrBUZUtE67MeVZURSxsbHBiRMncnCw36fEw7Y9xsZcLlxw+fSnXRYWLN7/fmg0
solnqwVf/KLNr/+64Nu/3WJmBjY3FZ4n+65vDewFQcDdd99Ns9nMx632LtGgV6fTycEDk1UEkAK1
NOWZWg0/TXn/6ip/NDGBKyW2lKQF09db7T/zmh4UBVpsJqvJfN/NxomUknq9zhe+8AXq9TqVSiWX
I70SmSUmOJAkkqnxCgcWGoAiSVQeLbsfmyQrSBT1ksPhqTKTVQ8FeXyvsDJDUndnCyyQlsjtL6ze
39IeYDEReMxWA0b8jEUiFbnUJoMPVF/k9DcCkJjvS6XEEYLpRoBjW0jJi3qfudk41ptOpaIbxTS7
KZ0ozeKALfYFSYoJOa6w6CSSU5s7XG+HeIXI9j4vMinxbEGzm/LUlWYGNAzwP9lzzb2c50C9cRJ0
tqhtxXQnj5D5U6TZX3c1N4VzlEEtAJOT9X4pk+tw/K4FklRSKnmEYYwlLN74urv52Me/zFvfdJxW
KySOU5586izf8e6HaLVCrq9ssTA3QpwoTp+5wtRkAyklQeBh24LpyQaL8+PMTI/yxJNnefqZCxw6
NMN0vcYnf/IBtpwuX4kFyWMryLUuR46OM3eqyWefXcPqJEyuxdxfFay3Uo76Pp1OwnanzdxYnaf+
5o9w8nv+Jna3Q811ccsVZJriuB6baytcPnuaqbmFfD71tc99kunFZUYnplEyYy9hCSwhaIxNIGWK
khKZhc8wNqU9SiIcxwUL0iQZGK2+57tWKUTgsvP587QeuYzlu7fM6LLy+8HgRZtXKmg9BEuGbdiG
bdhewuLLZI7kq7q9ol1HyurC25Td6CJdsxg0W0EXytrzpEhdN80/TblGUUZjvi4vnnr7qP9vgjJm
so8GKwaZwOptmXG3mkFjemBohoculsy+EkLQ6XT6vDRMw1L9eXp/TfNSs39NYKQIkHS73TyeuMju
MGUrpqGqmbhTXNUzJyHaO0IbburCWYMg+pxrX5GiF4x5XoqrP+aEWe9jESgryrOK+2rKbTTAY8qH
ig9dxOrXvxQTIPN8vKTFqlK0HIcHt7c5Wy4T2jbBAHCp6O9SLpd57WtfS6lU2hMTnPmb+IyNeTz1
lM8jjzh84AMWU1MZTTlNs8XjSkXxznfCyori937P5du/HebmVA6YaEAkjmN838+jtk+fPs3k5GT+
nN6njY0NSqXSHomeaYacKkU9TXms0UBZFh+6fp0/npwkEgIvTfsAk9u575kF8c0mzWZMunkfu9nn
62vgwQcfzMHIoiTw5QaG5LHfUiEsu2+sm7HAi7N15mZrJImW5t3YmyTpyUEOT5VZHi9hC6sPJOnb
hvGdoAEBiaJkC6arJSbLHlXXycw4DZBk1y4jk+9Yt3rM+s2Fc5cxKbKCq+I7TNR8XFv05De8IBKc
Wxm3mlFjWT1WTSrpxpJOnNKJEuIkK/gzkMS6MUgCeUKOIyxW2hHPbjQJpdwXKMl9hBzBdjfla+e3
ehIqccNUOz0mrJdxQZrLbtKYyWvPECVdNkYWCYM6QqXZvlu7YbP62DxPp3kpRkeqpGm/jDiKJZ7n
8NypK8zOjuH7LvVqiXvvPkCtWmJ2eoyNzR1OnLiHKIpYW9vk0cef54Pvfzunz5ziq489T5KkPPym
48zOjpEkKaMjFaSC505dZnFhksXFSTxl81R8jcgJSa90aC3VkW+b4/SXL7G66BPNuVTeMwVAa6VF
+PQ6S5WAUsWjkVrIp68SNw9T+sBfIzn1NJX6CAfueRVRN0TKBCwL23Hotpo898TXmJyd5/ypZ9hp
Npl1PTZWrjCxcBCpFHF7h6e+8hc8+LZ3I2yHlSuXcByHiZl5lMrmErbjsLFyDYDRyek+6c2eRQnt
HeI77HzmLO3HrmJ59gsqfRsEfg8ZJUOwZNiGbdiGra9pUKB/1TDp8xgoUuy19KboN6GLVc2y2K9g
L06mi4ahxQmryVBI0zRndeiC2/xb0UB1kOxHH6P+HHNfTA8MM7Wmb5Wxl5BjgjoaTAmCoA9g0tvR
xX8x/UaDIp1Op+93DaAUizn9WV5PB6z3D+iToAxasSmycooghBmDrD/bBMfMwkkXwuYxmRHUxZV7
0xfHBE/Mc2Pun/koGuYWATjz3A6SXb2QheQg0+CXCpxBKZRlUVGKyTjmMyMjlLODzoGSMAwZHR3t
k4Jp6Zdp6moyilzXo1p1uX49k9784A+C41gkiYVtZyZ22bFnwMnkJHzf9yl+4zccvvu7JaWSREo3
36b5AGg0Gly7do2lpaUcANRgpmZl3UjyJYF6mvJEvU7XtvnQ9et8cmyMFdelkiTIHuvgVhJDbnRd
vBCFbfF1q6urXLx4kU6nw+LiIrOzsy/b1UzdB9l11g8m7I59WF4cYWqiTBzLfUED83qJU8VoxeWu
6QojZYc4zWQyYkAcdB/AIiUKqLkO89WA8VJm2CpV5lWiKQu77+W2x0Bxn/XHWoBjW1Rdm2rJoew5
KFTfOPvLSHtuBoxkXgxkxyoVcSoJ44w9EsbSMKwlZ/TcDCTJmX89NsnZzRZXW12EZeEKcQMJBLi2
YLUZ8+TlHcIkY9nsd86z69ui04mJNzrZ983LdP6jQRBlCaTtUGqv47c32GnMsjWySGp72DIxmErg
OILLV9Zo1CsEgUuS9BiZloVjC9JUIkTmZ7K4MI5UiiiMSdKUe+5aIE4SOt0I37eYWXoXpcDh4oVf
4zve9zeZmD/MqT/+NEcOzxKFMdVaCc9zWFvfwfccyuWAKE5IkhRhWTz63Hkem1lFWeBWXJLtEL/k
MlkNEKsdRms+XgprF7fxbIvKA9Nsu4KVbsLo4gi8eZTW8zVes9mi7bkgBFEYImWKsB08P2A7WSOO
Ix56+7s5/eTXGJ9b5G//1Q9x6uIKj19yWRopMdso85lnuhx/8I1ZGlsUMTk7D5ZFksR5byul8Pxg
MCiX0bX6gRJHsP2pM7SfuIYInIwz9gKy8opjvjj+h20IlgzbsA3bt3gzZSTaV0AXWNoPQjdTZlIs
WoVhLKkNUwcVvPqnCbQMMn01fUjMAkqDI6ZhqAmemOCBLsRNQKR/UrwLjpgSFc/z+r4wu91uzrgw
fVs0wKSBBO29YO6r7lOT+aD3T7NKdMpOFEU5YKJTcHQzJT3FY9SFpt5/DWAUvTt838+NPXUfaLmV
PjZ9nk3mh8l4cRwn91kxDWaLxaYJoO1Onu0+iU9RRmSCbb7v9zEjdNMJPqY/SaVSoVqtUq/XqVar
tFqtF8VHwJxAxXHMl770JUqlEvfff/+LPqkyJ26hbXO022XH82i7LnX6ZSKdTqcvRrpSqXDu3DnG
xsY4dOhQfn2bgEkGDrr89m+7fOADFo5jkaZWXjD3myVDkljU6xbveY/FJz/p8r3fK+l2ZS7t0qwp
zSQ5fPgwW1tbucwtTVMqlQqzs7O0Wq38/mMCbyZbC8gBk9OVCtuOwzvW13mmVOLxahVXSjydlMP+
BfMgjbzVW2W/FSlOUQ54K0B0s9lkenqaSqXC2bNnGRkZoVKpvCy/D3S/X7x4kS988Ut84H3fieO4
KNvJgZJDS6OMjQREcdoHVg6S3UiZgQuHJ8scmixlfg6FGOBBYzyVCoViLPCYKvtMljwcYZGqXcnO
oDjb/YqgQYCQCYxo0MEWFq4tCFyB79r4rsCxBaiMjTFoDL0QwIj+GNUDRhIpiZLsESaSOMmYPprl
YhkMEv1GBXvSqYogid3b3sWdDue2O4SpxLVvnJAD4DoWVzZDnry8A1g3AUp6ciwFz1/YYSlWWVgI
vCwBEz2KLDIGjBQOyJTGxgUqOytsjh6gWZ8BLIRMzJPXl5Csj399Y4d6rZyf33qtxNceP0utVmJ0
tEo3jPA8F6VSwGHr+ufxF7+d17z57yElXD7zJ7zljfcSBAHXr29mcp0o4fNfeIapyQYHl6fxPZfN
7RYLU2PsLEvWNps4sWBkrsb159dJE8nsvZN0tkK8iotMJCPztQyoKLlYwJWLO2w3Y0bna0zMtAnF
Wc4+do27H3wNKs0Sz9rNba5fPI8XBMwtH+bahbPMLB5EWRZnr6zy0OIIlcDjYAU+f/I5qo1ZVi+e
zaKQgzLXL57jwNG7wXG48NwzjE3PUq7WKVdrYFlIQ/arlMLxfNIkzkATYWHZgq1PPk/n6ys4VS+7
Dl/gqO5+xm0WiTwESoZgybAN27ANW98X/Llz53KWgi7IdTFlFqrFRByzQDbZA8UCu2j6aAIexQcD
Jnx6Eq/3Qb+36OFh+n6Y3iW6WO90OjkgsLm5yerqarYC0gMtTLZE0Xuh6LGii6dut4sQglarxebm
Zs7Q0Kv5+v8mcFBkWpj9Y/aZmR5j9rUJVpg+M0AO7GgPllarlQM9p0+f5j/+x/+Ys4LSNKXT6dBq
teh0OjSbTTqdzh7pUnEfTUmWuX8mGKJ/LybcDHqYZrC6IDWlJCZAZPav7lctIdJAyvr6+ot2rUCW
FLWyssLU1BRhGL4kLIEcROz5lSx3u5yuVnEBqwBeTk9P50lBOiq6Vqtx+PBhhBB5X+16v7iMjjp8
5jMOBw4IpqchTS368aacgG4AJoLlZcmXvyx4/nmHubmUzU2nD3DVvkfaG+fatWuUy+V8zGpgT4N8
WupSZJiYgElVStY9jz+amuJNGxu8f3WVR+p1rvo+bpriaaaYUdSY51DoApXM1LHjOLg3iTvVoJ0G
Zm9VhiOEYHl5mT/8wz/k05/+NB/5yEeoVqsv2+hg3ddf/OIXaTQaPPbVL+M7injtPKl/kINLI4ze
ACjRJp+WlcluXNvivrk603WfOJWZ98AA7wwNGqQ9T5Ka57BcLzFRytI/BkX/ghrI7rL2kdPsB4x4
zu7DsTNDVO0bKdOUNE6wClHotxLlO2BQIAYBI6kkSnfBkTjJwBJtv6LBEcuysK19wKBe/w1ilUAm
t0mkZLWb8MROhyhOqUAfUJKfi96+Sqmwezv83LUWZ1Y7OMK6KYtIAyPPn99i68olcLbI4MiXe8v8
SSyVyXKk7WLLmImVZ6k0V9gcW6JbGsGSCRbQ6UTUKkEfaAdkxquVANd12N5u02p1mZysM9KokCYS
sFhb32FirEYUQ5psEofXKdceZHvtCbrt65TLDcIw4vylVe46Os/6xg53HZtnY6MJSjE7O0bUiVnp
tvj886cJmyGVsTLdnZDKSIBX9njyE8/jVz0a01XCVszssYzhkkYptmszeqBBdyfECTw21zbY6v4m
b3jnR7l09jkc12N6/gDt5g4nv/YlJmYXWDh8DCzY3lyjtbnB5sQ8ZdfhoYURvnR2hbMdh5lSRKlW
R6YpXhAwf+hIvjAyd/BIb6zIgWwOIWyunDvN2NRslp6DpPmJc4TPrOFWfTa2V5EqZaIxQ5zE3/CC
yCBD8OyeINhurVPyKti2MwRMhmDJsA3bsA1b1k6cOMEv//Iv7zGtLP68VVOs4utulIbyl1kFuNlz
xRUDDbjMzMwA8C//5b/MmTKDJti3ut836rMbTpxv8Nk3M5680UppcZtSSqamMr3yj/7oj9Jut/e8
d1Ac6u30wS0VCrcIBtzK5xQL6EG+ISMjIy9KIanTTT772c8yNTXFu971rr/Ucd/WBA+IbZuZKMKX
kkulEuUeWKKBOQ0omoCF7/vcddddebSyySpxXZdy2eHaNYeLF21+4AcUaSp6XgOalZWlgGQT2t3C
IAuLsHjDGxR//ucO3/u92WqkKcHR0dxRFFEulzlz5gwHDx6kVCqRpinVapXt7e3cb2eQd0lf3yqF
FAJfSqRl8cmJCQ6027x+e5umbXOyUuGa55FYFrZSOD3WiI5btqwsXDKxLKRlESjFq5pNykqR3AT8
KDKhbuU60OlaU1NTfOhDH8rZd6b/ycux+b7P6uoas3cfBuGi/BKLc3VGRwLiGwAlqlfYJ6mkFji8
ar5G1beJknSgZK4vZUQqKq7N0miZyZKHbVmG1Mbq+ZHsH0U8yGtEY2XOAGDEtbNxLgzwQsss0t4v
bjUAF+R2L+b1NiQ+eRHYYyBIqYhSRZikBjCSyWlM6Y/V+8e29h9X+8kA+wGdjEmSSsWVZper7Yiz
zRaVv/Fuote/De9/+kXc7U2U2OtToqTCdSw6UcrTV1qs7kS4jtj3GLX5rujph54/u8Hmdgev2kAk
5VzC8vKHS7K+t5SGQAQ4NuVom+Dy4+w05tgaWSC2S0xPNvBcu7/vgbuOzhNFmXw2ihPSVHJgcZIw
TIiimFPPXyEMY6RUzExVKDXegfAOcO7krzG9+J3MLL2Xz37yV3nV8cO86fV30+lG/OknHuWD73s9
C3PjrK5t8/kvPMODJw7xyWsnidKEyeVRnMDhqU88ny2odBKwYOrwGEmUMnfPBFtXmzTXO6AUfsVj
YmmEJEx57s/PMzpXp7V1nlPBHzHTeBt+1abbaTN/8AiO57G9vsrI2CTnnnuKpWPHWb16hSV2uHvm
EF+5sMG9s6OEUnBuo0NQKnPh9MmMPcJgw+eipNdxXDZXr7O1usrM0iGSMKT1mQtc/9opvGqJmihR
KdWwsEhlekvm2vtJagZJwfWNIow6+G4JuwCADdsQLBm2YRu2b+HmeR7Ly8v7FuyD5Cu3UyC/VKvu
g/Z/v0g6gLm5ub6ViaI56SCz0m8UtLmVQvhmE+9bOf7ise9ORLKvmJmZGeKemdogcOR2gZ4X+tzd
Tl8OAu/Mh8mIeiH3VSlFqVTiXe96FxcuXCAMw1y29WKDJbZlEQvB8XabU9UqSog8LthMCqpUKrkM
x/M8zp49y3333bcHJMnYOy7VqsMjj9jcd1/GJklTC8vqEdN10WXvMkuUyoCUrAC0WFy0cF04edLm
wAGbrS1noHeJUooTJ07kshsNGKytrTEyMpIbQ98QLMkQiMyQUSnqUnK1VOJyqcShdpv7mk1erRQb
jsN1z2PbdekIkcXP6vekKSNJwkwU0UgSth2Hp6pVxC2O99uRXgghuHr1KtVqlbGxsTwV6MUYny9E
0/fEhx9+mKeefoZXvfpBdn73SywuH2F2pkY3TG4ClFhEScpkzefEQg1hWcRpv+dU8b2JlNiWxXK9
xGKtjGdbJDKLBi5KZorsjkGSGmGBYwt8J5PTeI7AdUQfY4QcGFEZMFI8h1LiVjwe/Z3f4+qXvsBb
/9HPUXKy8WntA6oVizRhZRBBN05phQmdKCVOM+YMBWBE3AQYGTT28r/n/6qcOSUsiFLJ9U7IpVaX
7TDBEYKS65AcPIqamkVISS5oMmKERQ9curoV8uy1Ft1Y7guUmL/rY3j+7AbrWx18RxBZLhbebgTv
K2hulLFkrAzkSCXVskt94yLl5iqbowdoN2az+HKZ9LKXssjhMEwQwiJJUibG6ziOzcVLa3S7EQcW
JzlyKEuFeebZS2xubnPo6BXCztdwxTa//qv/mLc+/E6O33OQK9c2qFYCtnfavP51d7G902Zhbpy1
jR2SbsJXz5zji1dPc+DwFJ1mROv8JkfeuEDUTehshayd32L6yBhr57c499UrxGHC6rktjr15MZOS
dmN2VlocfGiOzlZIFAvapUewvbehJCRxzM7mBjvrayRxTJLELB6+G5mmTB9Y5vjyOH/8F1/jiqwQ
I5it+5y6vkkYhxy+937SOCaJI6xCwqEZxZyPHxSN8QnqExPIJGH7E2fonlrj1NpTLNnHiKKQemU0
u25vMC9SPTPeG92zzetUKomwtBw8ZWp0gVQmve+3IatkCJYM27AN27ABjz32GD/0Qz/E1NRUTo3X
MgszqcYsyAYl3OxXtBd9K240ETSBiuLKwyAApyhlMSU5WoqiPTa63S6tVovf/M3f5MSJE3z4wx/m
woULua+Hlh7pZBhdzJnHO0g+sh/AYn5JD+qr/YCcYkqHKVMx5SrmPhTTZbTBaqPRYGtri49+9KO8
4Q1v4Gd+5mcYGRmh0+nQ6XQIwzCX9Ohza5qommlB+wFne/wfBhj3Ft9nGvKafVgsks3izdymGQ2t
5VNadlKtVonjmPn5eX7iJ37iRQFLHMdhamqKqampgWavLxaolFgWI2lKLU35UrmcxQUb0dRSSjY3
NxkfH8dxHEqlEpubm6RpSr1ez6Uk+pFJmmyktFlft3nNayxNwDCSMjND1x/+YdjZgX/37yw8TwMp
uk/goYfgkUcER4/aCLE3rUgzTCYnJymVSrTb7TyW/ODBg7lnj+n7UxxjgybGyrIIeq9/vlLhdKXC
SBQxHYYsRhF+GGL3TAN1MZMIQVcIrgYBjwUB20Lg9yRONwIRBkUH7wek6nGxtbVFGIZsb2+ztrbG
e97znlzy+HKcjOt9qtfrvOH1rwOgVnGZDSq91BuFZYl92QVxIpms+bx6oZZFg0rVl5LTV2SrzOR1
NHA5MlKh5jmZkansL6qK97xBAIltQeDZlDyboOc1ohkd6ibASPHYtZGy9AUXPvb7bPz6r7H2D36M
5fEJQikHJuzsXc2GZjdhsx0RxjJn3FgUvEZuAI7fsCBkV/yhRWe2yPqsGaWsdEKutUM6Scr/z96b
B02S5vV9nzwr677et977ffuavnvunV2WFbvAAitxCyFsyRKKsOXAyGEIB5bDkgNZNmGHMUiArACF
jZEAxYIwILF4WZBgWXaZ3ZmdnZ0ZZnqm7+73PuvOrLzTf2Q9+WZV19vTM2hhenmfiDe633qrsjKf
fDLz+X2f7yERs2qiKKKoqFg/83FyYYhqmYSKkvRzBGiKhO2GvLnbZ7PjoEiHn5WOeBbEHiXxjty6
16bVGaCpypChEhJFh9ffo9TE/c1yfLqWR7GQIVDURJpj93dpskA/hAAAIABJREFU1U5gZyvD1Jww
js6VDs+lP+z/fD6DpsV9bRixZ9OZU7P4fohn3SCfzfHFL+9wcqWMb1+n1phmf38VzwvI5XROrszw
+3/4Gmvr+yzM1Tl/aYnns6ucXVni1h+tISkSp963QHfXRM0oqBkFzVDZvn7AjefXmD8/he8EzJ+f
wh341BZLOJaHa/vIqsTmtX1qC2X65ja79mssL3wtnudy49Uvceri4+xvbwJgmT227t5idvkkn35r
g+3VVZ78wIf4wy98icVTZ5GikIFlcvDGq0iSxInzl3BtG1lW4kQhIeFOjSFZUbC6HaxBn+nGAgef
vIZ7r4OUVZkuzVMrNuiYzSHAGT1wIekoIO+oueZ2c435+srhfCLw7ruHH7djsOS4Hbfj9he8Cd8K
wzCIoigxFhUmrcJ7Q4AJAlAYN25NP6BEYZEuvCcVPmnTz3EAIm3wGk1IS0h7aaSjdoEkTUaWZXK5
HL1ej2azSavVSr6/1+vR7XbJZDJJsozwvigWi+Tz+ZGiMm1EK0CZSd4KaaPadKpL2qA13Rfp2N90
RHLaayUNLKTNzca9YYRRbK/XIwxDSqXSiE/L1NQUH/vYx9jZ2aHb7dJsNhMJhGEYybGOm/um43/T
BpfpOGZxLILFkgbb0oCPADjSAE/ajyb9t0kpSsJDRuyLKLIrlQrFYjEBMDY3N78Ck+fogTKCr+Ss
XQIcWea8ZbGfyeAqCsYYiGkYBrVaLWGYKIpCo9GgVCohSdJ9rBJVVTEMhXZbIYokqtWYKRIn38jJ
6prrwi//MlgW/MzPQL0upVbeYqbJ/Dy4roxpyui6TBBMZpeEYYhpmty8eZPHHnssYTqJ5K1JrJJJ
42AEoBxWxNkw9sSwNI3rus5bw8mVFoaJY0IAuJJEKMsoUYQeReSHucjRAybGAngV+nsxvh9UzLqu
y87ODp7ncfbsWW7cuMHq6iqnT59OPv9em4yn7zt+EKKpChlNOYyAPaKIOARKdK4sFuN7QHR/nHCy
/Sg2fl0p5ThZjs0w74sRfgBIEkYxQJLRFfIZhZyuoKny8LMk8bg8BDgy8XVFQep5/KWf+BlaP/pj
LNfruMNksocBSva6Dt2Bh4Q0klTzoOLtoSQ+KZgkGvaVPPR0aQ5cdiyHA9sbxvrGRqzpfQzCkGy/
S0R8DTD051CH+7jZcri1ZzJwJ7NJRo+XoXxOxnECbt1tYQ68BChheB9JwEUeLWaJLEtEQUi9ZFCv
GATD9JkIiUiRyQw6zG6+RreySLe8gKfoqFFwCGIN+2kwcOj1bFzXo5Az2NlrM1UvUSiIyPQoThir
F5ifq2MYOts7LYrFHHMzFTpdiz+5eo+pepGXXrnF8swUn3jrFZ5fu8XFZ1c4+b4FwiCkvdXn2mfv
cfJ9Cxh5DYjIV7PUl8vs3m5Tns0xfbJCaabAn3zqJutv7PINP/AsgRfS2uiyeKmBrPncWf0EC3PP
Yna7rJy9iCzLLJ0+x8H2Bqqms3jmHNurdzj3+LOsvvkaL3/2Dzj/1HPsrN6iPjvP3PIp+p0Wvu8R
eB6qpnGwvYnve8wuncRzndHxFISoGR3NzdD8xDWctTZKVoMIlmfOEIYh9dIMfuBNXDC775lAhKpo
bB3co1qYJqMZhFF4H8gnSRILUyeTZ9nDgpXH7RgsOW7H7bj9BWsCBBFpLq7rjqyUiyJfxMqOJ9yk
WReTJpDpnzQQMD5pHE1QCO8DRdKAgdgvUayI1WhRbAlDSVF4pxNWxHGlwRFVVcnlcuTzeTKZzEjs
bbqYHzeVncR6SRdAcspLIg2cCDAhDUSkH8zi+NPvSQMVacBEFMbie8TfbdtO0nTEdwRBQLfbTcAk
wS5JA0ECsEinEo2fIwFwHQUUpYEV8f3jIJkAPUQ/iv1L/6QLZ/GdacNdcU48z6PX6yHLMoPB4G3N
N99tm6SD/kpPrJLraMiOaLgut4pFdA6NXQVg4nkehUIhkd+IazqfzycgWBookWWFbFbmxg2ZRkNM
QqWhF8lhQZTLwZe+BJ4HU1OMxLPGcdmgqhG5nMT+vsLcnILjHN430mCJ67o0Gg3u3LmDbdtkMhnC
MKRcLifnddK4mlRs3veeYTypOvQqkYZASpRa1ZaBbBTBECBBkoiGCTzSQ5yLcdD2QU1RFIrFIplM
hs985jMUi0XOnDnzjqKK/6xb+rwm13karDiicPaCGCh5fCkFlNwXP3tYsKuyxMVaiemcfp9x61Ex
wmEUEYYRuipTNlQKhoquysk4jZkj0TsGR4665oIgopIvMFUuYzvuQyYswW4nBkpURdgIH+018jD7
AuP2yrEkT5LA8gL2By67lkPP8+PxL0noijySgpPex1A6BEEUSUKR4cD0uLs/YL/nosgSuiqPFPxH
Pa81TaHTsbmz1sH1AlTlUHIhP+LFZnq8EjIiOZMliVBRIYoot1Yp9HboTZ+ilWsAEboc4fsRqqaw
urZHo1GhUq5z7foGrucx06hgmvbQzFxBVuJxcXd1h7NnFojCiH5/QLc/oF4v8vKrtynkDb7vuz/E
+n6T3cKA6UaZndstal6AntVQNJnn/tpF7L6LY7loms7uvQNOPbfA1c/cZOnyLG995h61pSInnpkn
k9fwBj6SLHHma5ZorndYvDxDMN/n5Zf+X2aqz+AbCmGYJQKMXJ5CuYLrupSrdV5/6Xl6nTaLZ85x
7/pVDna3qM3MYVsm67euM7MUMzZC36dcm4qvT99LRWPH8cCRApqawXppHXuthZLV4tjg1JgTQMlR
CxUjaW2yijnoQgSGnhv5rCzFczA/EHOccKJP3XE7BkuO23E7bsftvsmYqqoJMCCYJenIV1FIj0ts
xpkhosBOyzpE0SYkL2n5SHrCmd62+Psk6Us6vjddXKePRxxH+nPpwlx83vf9ZMU9DQIEY5F26YI+
zX5IgyLjfTIJDBkHEMZ/xtN8JrF2xgEksR9KSpIhgJ40Q0OwcNJRxZ7nJedXpOak2SNHxaWOpFiM
9ZMoeNOAS/p9gg0zzixJS4ompfGMrCynEplEvLOu6wwGgwQ8+0oWk39Wk6vk2pIkckFANgw5yGQS
sESMt5glYiSMknw+z61btzhx4gRLS0tj0hsBfCqoqsLamswzz4jxdehVEp+3GBw5fz6pE0gHx4hU
kiiCmRmJzU2ZEyfk4bbVke8U+xAEAU899VQC2kVRxM7OTsIQSqddHQVKjIN1I9dpungd7vSkAn+k
f9/Gd2kcIH7Q+U+P+729Pebn53n22WdpNpv0+308z2Nubu6B7JT3GoDyIEZFEIQUDeWQURJGIwDp
iEwnDClqKhfrRfKaghdESdLLUYaM4VBuY2gyxaxKPqOiKXLy+sOYjb/bQtkPArxhzP0kRkj6GBVF
ptV3h0CJfN+iwbt5LktjLBtlKG1qOx5bpk3T9nCDEFk6ZJGIPhsf3+ltCV+S3sBnrWmz2YlTvQSb
JJwguxn3NZEkia3tPhvb3RikUeSHjlR+b82B4hvFw9wHxE3FC0J0VSaIIFQ1Qs9l44Uv8NiFE7Rq
J9i0VSp5HQHTRmGE43icOjmDpir4Qcjv/f4rfPD95zGMPJqqoOsqYRTheT7TU2U8z+fGrU2eefIM
iwt1qrUCa3d2uVlsk13MMXWqim06BH5ItmSwd6fFxtU99IyGNgX/6Xf+HeSbFX7x5v/BpRNP8n2L
/yU/NfujZKcVXMtj/uI0gRfS27co1HOYBxayIhN4AR3rBd73we/F7rsY2Sy33ngVVdNxHZv97Q0u
PvtBPNflzOUnae3tUK5Nce7JZ7n95ussnDxDZbpB4PvcvfYGK49dQFYU5OE8QzxEwiBE0hQiN6D1
yeuEW1YClExajDj0YZVQ5BjgnmT2GkUhupqhVmoQpsAQWZKxvQGW3aNemiEIgweCLsftGCw5bsft
uB23kcJYxHymWQjjxW+6oB9Ph0g/cNKRuWmwJF10TypUxHtF8Z8GVMR+jDMRXNfF930cx7lPviEY
FuPmguntieJSSE+SCWEKXElH5aYLfNEPabBEGGsKwCINhEzy8BiPQhYSk/HV9aNWP9L9mZb7TAK4
hMzKNM0kJlgci+u6KIqCPywMhAwrzQqaBJCMn/+RSSUk5zP9d5GOMg6WjEts0n0+PqkZB6mEDMu2
7a+8LObPGMyUoghbVbkwGMSGpYpCOTXudF3HNE3CMKRWqyVeIKVSicXFxUSCkwZMFEUhk1FoNmUG
A4nFRSHBGffjEJIvMd4OmSWHUqv4vJw4EfK5z0nAqPRsUjpOJpNhZ2eHIAjIZrPUajVc1008YdL/
PqgYTjNPHuQb9HaAV/Q2jARxTxPRwQ8jwwFYWFjAdV0GgwGLi4vYtp0kNT3qE3PBOlEVmSsLJeTh
KnwaWE3f2/0hUPL4dAldlvGCcKLx66gBY4SmyFTyOiVDHSaOHJqkMhb5/B+jT49KdDvKIyEMY7DC
80Palpt4kryb4mv82RgO2R+yBE4QsmXFUpue6xMNGSaCRSJAy/RzZrwvFSlmjtleyK1di/WWjR9G
wwhh6Uh/sMPtgapIuF7I2kabZnuAosgjLKK3u57ee+M4jiSXH+AfloD0UYSW0Xj92h6GrnB2pUrg
Bei6ysmVOvdurDJVO0APC3QXz1Jt1JieKpPL6miagm27vHltncX5OrMzVZaXprl5e4udnRbVapG5
mSq6rjKwHebn6/zR81cxMqu8/Opt/vJHn+aPvvwWNxY7LJye4rXfvcn0yQr15XJswq3KLF6aTq6R
F1Y/zX/y+A/yI+d/jLI0xUvNT2OFPcK9LI7ZZfmpWbau7TN9ooLdc9CyGt2dHrliEeMpk73+Fyn6
z2D1O6ycu0jnYB+r32Xh5GPcu/YGcydOEwYBtcZs/Ax2HJZOnyWKIqZmF2Ivkl6Xm2+8wqmLT9Bt
HWDkCmSMoaRJUwhtj/ZvX8fZ6dFyD5jW51BklSD0J1xzIfKQNbLb3mCqPEcxWyEI/fvM+mVZJQzc
2C9HvD4ETDQ1M5LNdMwsOQZLjttxO27H7W0nZ7quTyzuBQNAGdLURRGdZh2kJ8Zpmc6kyTKQFBzp
70/LLNL+FeNsEgGMpE1dHcdJQIY0MwZIiv+0rCVtDCqAgUn7LICQtGlsmvmR3m5athMXoZlE5iM+
I96T9jxIMyzSxzPOlBkHLITcZpxhMf4j9jsNzAwGA/r9Pu12O4kRFvuVPn9CtjHJxHfcmyZtApze
57R/SfpcCrmFOGfpvhV/S4+dNNMmfb4EG0j8zbKsBCx5r6aNvNvCSQJODAa8VqmQYZRVIssyhUKB
XC6XnLdcLsfMzEwCkggJjgAxZVkll5N56SWZxcW4gPJ9CVU9BEFEEk48rieAOKmxEAQR09PgeTKd
jvAtOZTipH9EMo6u67z++us88cQT5PP5RAIo/j7pZ3wf0qbHkxJ0ooeUZbzdRHlcdpiW26V9lsTv
ov+mpqbY3d3llVde4SMf+QiLi4tfFSuYQrYUhBEXFwoUDAXPD4+MXveDkIIeAyWaHAMnk4Dzwz6N
x141r1PJ6SjyoRwIUv4Xf859mb4/dwcuQRihjLHw/rQgycAL2DBtdi0H24+BmRiQOWR6HAI7k7cl
S6DJEgM3ZL1ls9G2cbwQVRmV7BxliimYJqoq0e7Y3Fvv4Lohqqq8a2DoPTWWJbC9ID5/ksRQ9Xjf
eFcVmV7P4dximd32IJaLRBH3dkyWpwuszFeQgUuyzetXX6AoX0CtLbJ9YCIFPvm8wemTswRBiK4p
fPb5N1hcmKLTG3ByZYarb60x06jQaveRZZn3PX2Gbm+AbbuoikLjY7M0+xKKKpMp6GTyGmZzALJE
b9/CdzPoOY3ZU1O8+sLr/JvmL/AP/spP8uU3XuaTb/0aoQeWPcAo6IR+RHUh9rOqL5fZemufu1/e
ZvZsnVxF59rmrzPlRcwtnSWTlciXyhj5PKVKDc91Wb1+lVMXH8dzXTbu3GB+5TRb6/co16ZiuY49
YO7EaaYcB1XT8FyHTDZHFEbIukLQc2l94hpB20Y2VIwwh4REs7dLKVe9bxEO4sSabCbPTHVpKPOa
7J8UBD77nW3m6supZ0GIpmbIaFmC0D8GR47BkuN23I7bcXv4iYLwvEgDE2KFP222mpZ5iOJ/ksFW
ujhPAyKi4B9flRW+G6JgHlkNS8mCxE8aFEmDF2K/heHpJH3rJCnH+Ar2ePSnKIzSpqTjXiYjEYrD
InZSqocAAgQwIsAewe4Y9/FIyyxEP6XPV/pYRL+K4ng8OSYMQyzLotVqJSkpaV+UdNpHWjaVLkbT
xyLL8khykDhmIAErxLGmJTbp85Q+n0EQJF4r4wwfcRwCJFFVNWEoiG35vo9pmkl/PepNkiSiMMSX
Zaqehwzs6zr5KEr8StLnq1AoJCypjY0NLly4kIyFNFgRfyYe1/v7MleuRERRzBBJx7M+aDJ5P3sn
NrJsNCJu3ZJ58kkZx5FHPI/SUhzP85idnU1ASZHeA2BZ1kgqzlFgyThQMg72TronHXXPepiV8KNS
cNIgoQBM0yDK1tYWQRDwqU99io985CMsLS39maUofSUBAi8ImS8bzJUzCVAyXuAIRskhUCITRNED
gZIgDMmoCtOlDFldIQjjgn9E7sef/0pwGrgJwpC+PYyQfRdAyYjEhVgiY3kBm6bNtungDg1bNUWe
CLBMAlyEb4gig+WG3GkN2Gjb2AIkGfqShG+zHYjZJJ4fsr7WZe/AGl6zj6bsZsKVHS+gBIdJR+NA
SRRFyJrK2k6X9T2TD16ZYzmjEASH4z4YMnRkJQaPr6wUifZvU+zvYqozbHkZJEVheb6I4/qcP7dI
p2uh6yof+UuX+cznXidnZHAcj5XlGbJZnSCIOHlK49krp/ilzzzP7gUfv+WyOzDJVw3UjMq9L29T
XShy6n0L+G6A1bTZurfNx77uW/neEz/IT/7bf8RHn/lW/uG3/FN+8c2fxGw5uJbHtc/dY+HiNOWZ
PL7jU5jKUZktIGsy29dayFkbqbTHrdc8rnzwuSFLUGd3Y5VyLWaw7G9tkC9VcAYDFFVjdnFl6EUS
IssKYRCgahphENBYWCbwfFAl/PaA9m/fIOjaqFmDXr9FEHr0Bm1avd2hoauPiMOOFwykRFaTMwpJ
9O99Ej4iFEVlYfokQeCP+JXErDR/4kLecTsGS47bcTtux+3IAiBdXAoQQhh/iveki5108TOefJM2
9kyDA+PmoWkARhR4aZ+LtGfJJNAhvcIrYoLTQIRgKYzv63hRNO6vkgYbBCiRNotNsx/SkcVp0CHt
aTAujRlP8kkfY7qvBSilaRqGYSRGtAKYSMujxDkT/g9i/8fNYD3Po91u02q16Ha7yWvj0cHjY0IA
X+MJNYJFk8lkyGazZDKZ5PV0wo/4XLrvBKvGcZwRlo7oZ1mWk/fBof9KGhwa93exbTuJpC0UCl8V
QKYkSXiyzNxgQEvXCcU4TY0tAYZIkkQ2m6Xb7dLv9ykWi/f5hhwawsqEoYRtS5TL98dVP8wEMg1S
SFJM4z9/PuL55yWeeir2LUmP/XF2iQBMWq0WmUwG0zRptVqUSqVhyob6QLBkUtE4ycdkUpz1pOOI
3kF0sLgPSpLEiy++SKFQ4OLFiwB8/vOf5/Lly8kYfOyxxyiXywBUq9X7/H8etTEpSzJhGGGoMmdm
ckkc7ySgJAxDNFnmUj2W3jyIUSJYEKWsRr2YSVJeJHhPFjeH+w6mHeD5IbIsvSMj2XFQQpMlnCDk
Ttti27RxgwhVnmzYehS4EUbxZyQJugOfnY7DVsfB9kIURSKTAkmkB4AkYRQlkqL95oCt7R62E6Ae
kZLzCN9pAegPfHoDj1pBIgoOAZOkf8KIYlbnqTNZwiAkDKIk6Wh5poDvhSDB9oFFtaBjDkIyuoru
DXjMvctidY7nN7v8weeu8vSlJc6cmmWmUWFnr8N/+PRrzMxUube6S7WSw3NsIsfixPIUX3j5Nu2u
z0G2R2TLICt0dtooQ7AqV84wtVJm+/oB+VoWo5ihvdbGXA34HfnjXJe+yMsff5Hv+/rvJ+jI3H5p
nVPPLDJ3ts5rv3OTK99ymkItS7aUQVFlHNOlcbpCa6vDbv8zXH7yh5EVg9tvvhI/bzI6+UKR2vQ0
1179ElEUcurCldgsVZYTnyhSUt0wDPFsB9lQ8Zs27d++TtB3kDMarjPAyOTod7pUClNktCy2OwAi
NFUfzj98wihEU/Xh/T1AVeKo8aPuJWmgRJIkXN+Jn0lDv5NjkOQYLPlza9/5688fn83j9p5s/+57
PnjcCW8zaROAw2AwGPGwEKkxIk533K8kLUERBo7pgluADsITJZ2uk/YySDNQBFgh2BeiyFZVNUk8
EeCOYCoI/wPDMJAkiU6nkwAKaZAhDWSI/RcRwoZhUC6XKRQKCUCRlqKIwtxxHAaDQWKUKuQzadAk
HdWajh9OS03SYFO633RdT/q8WCxSKpVGGD1CliT2YTAY0Ov16PV6SQzruEeK53k0m006nQ6maY7I
rMS+CpBFABTp4jPtXSPACvE50zTJZrMjEbHjEqgwDEfAkcFgkABzaR8cARYJg15x3IItJCZfwqtG
9J/jOLTb7aTY/qoAM4FIkpjyfTZyOVRiCY40HLuapjEYDKhWq8kYrlQqrKysjFxHafZPfN3JWFYM
mJRKEWEoi3CYdwzmiIIjDGFmJiIIJEwzXnmeJMURQIkYy2tra2iaRrlcptlsJu97OxnO+AQ5DbZO
YopFDzB6fTuj1fQ9S1EU9vf3CYKAO3fusLGxged5nD59mt3dXX7913+dkydPUiwWCYKAXC7HiRMn
jui3Rw9cR4oIgoizs3kMTU5YJZP6NwQuVAvktNij5Cgj19isMaJW0JkqZoZFEEmiyqQ+m5hMJUlI
R4FqIs1n+L7/GM/N2FBYxnLj6vqdJu7AoWGqjMSWaXO3O8DyArQUSBI+wFw2PeaVFEiy2hyw23Xx
gwjloZkkh7IUVZbpmy4b2z06XQdZlt4xUDJyHb7Hx3Y2E8dkM3a/SP4NQyoFHSJhYnx4jIEfoWoy
YQSeHxLJEtfWO2iKxLkTNbJZjf7tW1QPBnxwdpZKo0Kz59A+2GaqWmBrfYtv+JrT6FLAvc0Or95q
sR+VqTcz/OGbc2z2FHLZIiv2qxhah/7+gJnH6pRnChzc63D35W00Q8Hq2uiGituLuDn1Ze5tq8zP
LCIvwadWP47XhoXzM5itAdlihrMfWo5NXf2I0AtZf32X2cdq9PZN6vNVgqzN5s4fQPfrKWRV6vMn
ULIl/CCi0zdZvPA09958jQCFxvwinuvGAFIYQBgiyRJmt42eyaLmDbztHs1PXkeyI5zIxWofkDMK
3Fp7g5Oz5+mYTbpmi0KuTBgGTJfniADL6eMHPlPl2Rj0kGQOujuUclUURYsjsFNmrsl4HjJTVEVj
r79FzihQzJYJouB44n8Mlhy343bcjtvDT/gEK0H8OxgMCMOQTCZDLpfDMIxEbpFmCoz7ZqSLIlHs
C8BBsBTSxZsAUQRoIsCPNPtEFDKiWBbMjTQjY5yur+s61WoVANM0RwCIdHEkGBGGYZDL5RKjyUaj
kXhA5HK5BCwSQILv+1iWRbvdptfrYVkWpmlimmYiBxFFvliBFgCCAHzSshrRX2Ifs9kspVKJSqVC
pVKhVCqNAFXpcyb8RzqdDnt7e8iyTKfTSVbmBZtFgB+dToder0e/30/6T+xf+jynz00aKEmn6Yjo
YQHO2LaNpmlkMpn7IohFn9i2nYBftm2PMI/SDCZxXtKRyQI8EeMkzaoRTchwvkouTiJJQosismFI
V9PQUkBf+roQgJdIwikWiyOsk3ShH0uZJHZ2JAxDQlHA9+NV0ndizJg+b4cRwhK6Dr2eTK0m4Xny
RHaJGGNRFHH69Glu3rxJoVBgbm4Ox3FGwNNJ0dRH7UM6WWkcYHk7o9ejir9JfSIixtN/29/f55VX
XgFgc3OTmZmZ+wrGd8reeS+Cd34QUcqqzJcz+MH9bJ1kJTcIWS5mmcllcIfX+ST2SRooqQ+BknEQ
5O2Sh6IwREqAEEBRiGQpjsKOQggCpIg4Xlr+04MmaWDfDyNcL0CSopFY7YcFSlQpZpPcbPfZtRwU
WSLzDkCShEkCdO0USBIOWSkPAZKMLppIeF7IxlaH3QOLMIxGQJIHnY9xcJJUILf0HgVMJEkiBCqF
DNmMMkxjiYiDxof9FkUomsLrt5uszBQoJPG2MbAUBBGrm12WpvNUCzpGRgUiImS6fYeN/T5LUwUa
s2XwffzudfYrS+QXZ9ntuFz+xm/mV26o7PQKfLltYA58fL2A82pA3lhAypt0LYOrN2SWGld57INl
JClk/16XU88tcPML6yw/MYuW1WiudTDbNrqUwe+GWPoARVXIRDluv3qH9//1S+zdbuEOYrlra7PH
4qUGru0jSaBlVOpLFdChvF9gefMO+1tXmWuUKFszWJGBXJqnc+cmlaUTnJmeQ8qGyHYLIwrxfIVI
yxPKCoqqcdDapLFcJtzo0vrkdXAjVCNDe2eVanEaTdHIGUV6gzbTlQWK2TKaGjONRWJNOV/HcvrY
rkU2k8f1HCRkbHfA5sGbrMycTVgn991jJXC8ATPVBcIjEnSO2zFYctyO23E7bg+cKAhmhihes9ks
iqJQLBYpl8sYhjFSOKfTTISRaHqSJCQZAggQRf6kKNG0J4goesY9VMR3Ck8OUYynH4zZbBbHcRKT
z0wmk1Dexf6lgYM0myKfzzM1NUWj0WBqaopSqUQ2myWbzY6AJvl8nlwuRxRF9Pt9ut0u7Xabbreb
+IBYlpWwPtJMG1HABUGArusJK0MYqwpgqVAoUKlUkv0pl8vJ+RDHIlJfBIAjAJY0g6XZbCYFqmiO
42DbNt1uF9M0MQwjKahzuVwC7BQKBYrFIvl8nnq9njBHBCgk+lgwOQaDQXLO0qyXdLGTltkI0Cuf
zyeFpwBqstlswqQRbCTBIBHHLQAa4WEjGEiif/r9/lduCslTAAAgAElEQVQHs2Q4ic+GITJgqSqa
JCXmrqJYF+CeYRhsbm5SrVaZn5+/Ly740K9EQddldnYk6vXYryQdF/xOAZMhrhMXB5FEuRxxcCAx
OxuzV9IgyThg4vs+pVKJixcvJv41YswK35I0IDrp+8cBkzTT5ChJTvr3cTPqSW3c4LVSqdBqtTh1
6hTtdpt8Po/neXzbt30b58+fZ3p6eiL77ijg5hHB7uJ/geV6FkWWRtgi4/5GeVVhpZTFn3BuUlsl
jIZASSFDGE72MbkPROTQ00cB1KKBo0IgAS5IfVAGLhk1YiBrRCUdVJBskMxBDKYIFsq7OBeHcaQS
luMNI5ClZJ+iMEQaSxAbH3NRFMtu2q7HW81+zCZRUgX6A0ESRoxbOwOf1YMBuz0BkshoSsqcdSKg
BekEHEWRCMOI3T2T7V0Txw1QFOmhI4HH5XCSdJiWJs7Ze3XBKAY8woTNFBu8RhCBltXADQj9kMsr
1VgOFY4ajyoyGIZKs+dwZ7vP+y42eN+VOTa3e3zmtS3OLVWwbI/ra20unKyB1WPaeo1/svm1PG8t
EvkefVdisHWH+sICRqVOsHmHvKaTKc5gtbpkcgUonWVtcAp/12K5/hK12RZhEGEUMrQ2euhZlZkz
NW5/cYNuw6Q6X2T72gGO6XHq/Qs8890X6O1Z5GtZMvlY4iLJEgerHaZPVlm+MoPrBngEWC90+FDx
HLudDpWixsC0yLBJTpcJ2jc5l9VQDva4u7FPfaqOE8g4jkOjMY0j54jy00SSykUVrLv77H5OR/Ii
7Mhm0DeZKs9i6DlavT0Wpk4gSwqqrOIFHo7noCrqyLgyBx2ymQJdq8V0eY5qcZqIiLna8tCAV2LS
KAujkN3WBnNTK4fvO5bhHIMlx+24Hbfj9k4mfWkfkGKxiGEYANRqtcT3QLxP/F9IKYT8wbIsstks
+Xw+AVfS3iPiNVEQiYegYFSIgkgkyIj3ie8S8pJ0RG/acDafzxNFEZZl0e/3k4K5UCgwGAwSH4z0
hF4wZ2q1GsvLy9Tr9QQ0EPslwBuxkiyAH8/zyOVyiQ/HYDBIgBXP87AsizAMMQxjBOxJ+4ykfVXE
ZwVQUK1WKZfLFIvFEfNbIflJAwdCAmQYRhJLmt62mGykwQ2RBFQoFKhWq8lxFwoFGo1Gcu7r9Tql
UgnP85K4YcuyEuCk1Wol8hjBrElPmseZKRCzi8SxCWBGgDPVajXpgyiK6Ha7yfgaDAZ0Op1ERmRZ
Ft1uF8uy8H0fTdNwXZdut/tVI8MJJYlsGBIMvUsycF8SkQCMhDxpYWEhMcJNs7gOPTdkZFlie1vm
iSekRH7zp4lcFp+XpJBGA7a3ZR5/XEqMZNPyu/EfMU6vXbvG3Nwc/X4/Sc0aN3pNT57TYMkkkCTN
NBn/3Hgb9+MZv0dO8j4S23/uuedG3v/YY4890qDI0ec4ZoDkdYWpgh77iUwAgqIoIohguZRFVxS8
4b13EmgQhCGFjJYwSsb9ScR7ozD2QxDAqyzLRJ6HnM/SVyVe+tVf5TlPZmb9LurtF5Dbb+BaJvf2
4fTJObzSabzzH8b+2LcSPL6I1HGRwpBIlt8VYHIowZGwvZQRehii5XJIega/27nPmDb9vNUUmb2B
y9WDLlF0aN56lORoHNzQFQnLDbjdsllr2glIoivSYboND2alQCzRiSI4aA7Y2TMxLe8dS24mnVtF
VTB3Wpjuwf1xWu+1ORCxiW1v4LG12+bSyQpREBICf/zKFhdWKli2j++HLM0Wify470QiU2/gMTdb
orlvcn6pjO+H2LZP33L58OVZZmYKEEQYWix3vLtv0bECXtyXCQsRKiG1nEqwskTrxhsEjXn8wQCj
sYhr9hkc7OA7NmrGINeY5/arezSXPsx09lVOLNxkeiVLJOn0D2z6+xYnn52nUMuSKxuEQURtqYTT
d/G9gMp8Ec/xIQJVV3jpN99k8VIDRZaxHIespHFlo4TT1bnX2+P66i4fft959ls9Npsmp5caKCrc
WNulUsyyuLQYR/TaLnYYsHpvlZPzVczWXaIwQjMUso7CxvYJ5usXiByLIPQpZapsN9dw3AEZfY5m
d4d6eZaBY7Kxf4czC1dQFRVFVnE9h8XGadb3bnNn+y0q+XoCYhdy5VgaFY0Ct4nZq6yw1DiDH3jI
0ihDahJQ/igz/47BkuN23I7bcfsKraqI1ed8Ph9HIHa7SeGeyWRGVm7Fw0RV1aTg1vV4hSKfz5PP
50cKdFGki0I2zUZJAxBpBkjap8R1Xfr9PgcHB4nprGBTpH1PBEvCMIykODw4OBgBDAS1Pw2WVCoV
6vV6AgoJEEMAK67rJu8PgiCR9QjgRrA6stlsImkR32maZmJim5YviUJQADhp6Y1gu4jPiELNdd2R
IjBtmivABJGsI7bV6/USwEcUhCJpRjBrhPxInLt6vc7c3FzigSH6UxxjOpVIgBXinDWbTXZ2dhLm
iizLCVgk9t913UR2VKvVmJubo1wuJwCRkI+USqURuZcYc5lMhnw+n0iJZFlOQCPRtwIMeuSLUyCQ
JApBgDNcCZdTEhwBfhQKhaRPn3jiiZHfJ0lwNC32FOn3JebmGK6iSvdd5+8EbBWASRRJzM1FvPmm
RBjev6/j7BLxu0jCWV1dJQgC5ubmEoDtQWlVabBkHBgR1+NRMcLjniVvJ8MZj+ZOAK2x63IiFfyR
f04MI4BDaBR1MqqM6wcTmRNhFFHUVRq5TMIqub8f4ihgVZGpF/WRwn5S4Z0rGLheDJrkczoD08Gf
yqHebZL5qZ9A/8V/wY1Gk/KHwZ2H55ef5s3mNIVv+16+cf+/4VL1RcI3P07hh2uYz/wQ/R/9H0CW
kPx3DpikJThhFDFwY/lCFIYohsHdF5/n4OprXPzrfxttgpmtAErudQfc7phxRLA8WXJ032eJpTV+
GHHvwObOvoXthWjKqL/J24Ek8X01/nu357C9a9LpOkgy70pyk9wHoghJUYjCkM7mJr31PcKGHyek
kBblvPdaEELeUDlXK7N7YNIb+JxYKFPJaxiqTK1RwLJcXr91wJVTNcKQ2KfED1jds2j2XBbrWQ56
Lvm8zlt3WkyVM1SKGbyBz+ev7vCBiw2iIOJEI8Pnu7NYg1mykUskyfhBSOD5WLubKNk8ajaH09rD
6/fIz61g7W7QuvYqCx/6y+RrOfrbmzTtWTreGc6duc3s9CaDto+sqgReyLXPrnL6/YuoGWXIOtEI
3JA7L22y8uQsvhfiOT6Pf8sZZEnGCl0qQYaVGxnW3tjC1yIatRJEEVu7LZbn6vQsmxt3tzi5OM2J
+RobOy0KWX34bNZoZHQ8P8BHYRCobO21WZqdYuD1yBabrO7cZW5qloFtYrsDSvkqnShEUzQMPZbX
1Eoz5Iwihp5jfe82A8dkujrD+p07zDeWefrUh9nu3KVRXoiNxSOJIIqTqCaPy5Cu1SJvFI8TcI7B
kuN23I7bcXt3YIlhGGSz2QQEEGkiQv4h5DmCHSGkJUL6IMtyUqALaUU6AUWYeQovAlHApAt2SZIS
Y1lRgIjPGoZBrVaj3W4ngIBlWclqufBZEVIOIfEQDAiI2QyCtQIkBbmQGYnvE8CNYJcIOZFgv6TN
XAVIAJDL5UbAgEwmkwA+YnIq5CQCeBF9n8/nKZVKSfSr6I9er5fIdhzHGTGcTU/aLctK2Cvi+zKZ
TALopM91Wm4lzqnneciyTK1WS2Q3lmUlYFWv10s8ZwS4I/xf0mBGPp9P2B+maSaSLmHgKs592ptF
FMsCOLMsC9d1kwjh/f395HhFJLQ4T0KGJPrdtu3Ew+ORZ5YI+RJQ8Tx6wmh4jKWxv7+fSLWEHCRt
KjwOlkiSTDYr8eabMtVq7C/ieRKq+nB+C0cVSwIsCUOJWi02e221Yk+UMJRHmDDp/RFgqeM4XLhw
gU6ng6qqmKY5IsN5GLPXNKCRNntN7+ekOPGHmTxPel8aaDlqW18tk/IYCItQZJgq6hOlHeJ4wzCi
kcugDmU649IuwZIIw4haPoOuyEOWyv0MBdFe/MKLzC8sksvmePGFP+Hy134t5X/2SxR+7X/EObXK
Z7/3+9iVIr584RzK2h9QWfhOcu7nmGl/nJklhagGnATZb1L6jX+E9v2v0P6FXyGSGUnueFiAEGK5
xsANcP3h6nTgE+ZyrP/y/030mx9n+5u+ldMzc9jD+3DiqaUo7FhOApQcBapNMrDVFYkD0+P6tkln
4KOOp9tMkNuktxGGQxNYWcK0YvPWbjd+hr0TkOSo/ZNVFbvXp7u5iW/Hcqe4oI3e00BJlAKo5QiK
OY28oUEQculUndAP2d43mS4bPH6yFnuYhDY37tkszVZ5fDnLxv4AWVPY7wxQdJknzk/x+y+scXOn
z9PnG3Qsj9fvtHjqfAMpgE/cCHG0kLwu4YUhvbvX0UtV5j74TYSuQxSESKpCf+MO5WwOrVCiuHQG
u7WPXqqgGjm8zj3u/nGfzTfmOHnxNI8/sw/+NoHrUV+usP76DqqusnBpmt5+PE8ozeQTSZ0USXT2
TIoLeeZaBme3C4RugDNXYnXjgGLO4NnLJ+j2bTp9i17fplzMsdfq0aiVmKoW0HVteJ+Oe1JTZVRF
YrZeRJFBUySypRy9ukZz1+fG+mvUSrPoQ1+S+foJeoM2Gd3AtHuEvZD1vVvMVBdRFBnJV/mabz9P
Lv8kv/2zL/O1f+U0f+1D7+fXfup5JEnmoLvNdHmeiOh+9sjQsNi0u+SN4gPv64qsEoT+MZhyDJYc
t+N23I7b/Q8LwSoRDBDhGyGKX8H0kCSJWq2GYRgMBoNkVVsUzLOzs4nsxTTNxHjTcZwkmabRaGAY
BsVikUqlkjAJRDqGACPEZ3Vdp1KpMDs7y/r6Ot1uF8MwkqK6XC4zGAxot9vYtk25XE4K73QhLQxk
x5N7REEmCm0B/KSNXU3T5ODgAIDBYECz2RyhbwqARRhsim1lMhls28Y0zaQPBYVcMFsKhQKlUol6
vT6SIrO5uZmwJYTUyTAMZmdnR8xyhVxFgB5CBiMAnvFCURiiCnBBsBDy+TyVSiXxXuj3+4ksR7Bp
BDiR9hjJZDIJk6ZUKjE1NZX4t4g4XwEsiWQQYd6ajrIV4Jswge31ejSbTSzLYnp6OmEXpBk1aTNP
27bZ399HluWE0fOoV6fS8Piqvs/NbDY2dx1jaiwvLyfSr3v37nH27NkRA9Xx2GBJimODb9yQefZZ
AZDEviVifvhO2BDpler4XMSM+6kpidXVWObjOKMAj+/7I54lQoojxuHm5mZyDQspTtq/6Cjj1tEo
Y2kiuDLJv0R6iBST8ejgv4gT6jCCnK5QyKiJp8YkHxhNlpgy9IThMGk8hSEYqkLBUAmG4MkksMDI
6ly/dp0vf/4P2F15DDSdfnefs9/xv1HN/Q78Pbi+B9aLbew9iab0Fn/zqX269/4+y9OwtDDclhlX
xJEkEf0dley/+k38H/tf6f74/4TSjIv6d8osQZawHD95/qGoyL0e5/77f8zB9/8Ay1MzOEMmn/iM
qsjsDRzebPbeFihJe5Oocsx8uLZtstocAIyAJJPGY3ob4v+qKmFZHtt7Jq32gCCM9+lPA5IIfxbB
JunvH8CQ5UdwKFd6T99uxdgdAkbZjBozFsIQwtgbxrR9pisSr989YK4xRe2DP0TtpV8m6t/Gvvz9
LDwWsPvir1HIZVAiuH6vzUeemEPTVbZbFqu7ffY6Nk9fmuFL13rcK30DhhsRqRre/g6ynkFSVALH
xtpZp7B4iijwaTz9IezmLk7rgMpjl5EkmcC1CRyHTHUONWeiGDlWb3m07Q+wMvs6J0/voKsOr/9+
j5Unp5FViTsvbXL6A4tISFhtm3zZwI0CtJzK+e0iwWsmLERstNqszNWZqZexHZdiLku1lI9jvfNZ
wihC11Xuru8RBBGnl7O4SQqghGk5bOy0qJRy2I5Ho15GVw2q9T3On3yG7YMiGW0YCRwFSIGH49no
qsFOa51itsJS4ww9q005XyVTy/OHv/USf+8f/g3+xo9UqC/kef63riOjYTk9elaH9b3brMycpVqY
TgAPgEiKkCWFudoKfuA94BqJ2Dy4y3R5/pGOdj8GS47bcTtux+0rsaKSSioRRXHaK0N4f6iqytLS
EqdOncKyLNbW1kakO/1+n3K5zOLiImtra0mkrvDZEIwVwXQQUhAhyREsFQFuCHaEMG8VRZ8wXRVG
nsVikdOnT3P16lVarVaynTSDQfg6CBaIKLCFr4fjOInhqTB8zefzCRBw9+5dNjc3mZubIwxDdnZ2
EjBEPFBFYZrL5Ub8WkzTxLbtxBQ1HRks+r9QKJDP55O+DoIg8d0QLAkhqQEShs3y8jKNRoNisZhE
Gfu+j2maCcglvk8cszgnItFHVdVEiiTYRJ7nJf4jQMKuEX0pwCxN0ygWi9i2nWxfMHtEASr2QRS9
AiQRsikxhtLeNaKfxL52u112dnYSM1NFUZLtCkPQ9PsF0+YRvzCJJAk9isiEIR1VRY2iEXNXwU4S
fj2XLl1KrpVxdkl8TmQ0TabXk3BdiYWFOMFGlkc9S94Nu0Rcu7IcS3HOnYt44QWZJ5+URsxR09fm
eEKOkKXduXOHK1eujDDTJrFLxsGScYna24El6c+/3TGnJUTjPil/MUD1uCgvZXVUJZaBTJJ6BFFE
zdDJDmNUJxXJsXwlpJTTkGWJIJgs1ZEkCdfxWVxc4vSFp1g5cZJMvcbgY9/A7Pk/IfgBmTdezfLv
B/8ttdMlfu7ef8d334TVDEgXf4jfOtDJvPo5vnX5i8xWfGQF8CHc8om+Syb3z3+a/lv/FdHKFJLj
J6axDwOUCAaN5Y5KkQLfZ2pmjtnFFWzLHLn3KrKM5QW8edCDKDbWnAQ2jQARHBq4Xt3q0x346IoM
0oNBkvQ2AFRFxnF9tnYsdvdNfD9EUeQRoOSdgCTJ75KErCg4vR6dzS3cwQBZVeP7l5DlPAJFZwTo
qsxbax3m5gzCMKCQUZGAjaYJYUS9lMGPIs6drHNrdR9zY4/ZD/4QytaLRCc/iv/lnyaXyyJ5ErIi
s7rTZ22nzzc8Pc98Ncs3vW+Rm2sdbt1ucuX0NPZbGoqmETrx8yoKAnKNBay9TWRNJ3SdGDRZOEF2
ej55j5zRkFUNo1InDH2KS6fYe/UL6KUi1s4qL7zisnHpMYzup9HpErgNvvCr11l5cobpExVcy0PV
FFwppGCqvK9fw9iPaJV0Wl2LYi4bz2GCkHw2MxxncVy4YH8BWAOXcjGLLEu8dXuLk4tT5LMZinkD
PwjZ3G3z9KUTBEGI44XUKhq3bn6RzX2dxxYfI4xCNEUnjAIqhSkkJK6cfD+e77DX3mKuvkwQBORz
Kt39DC/83lt82999jqsv3uXlP7xBrqqhqxkWpk5SzJbJaFmCMECRVTb271AtTpPVc4RRmAAlDwIE
i7nKMUByDJa899p//o3P8R2V+w99p9fhU1fv8Yn1Pt4jciwn5+b4nvmQn/3SDua7/MyPffsH8K5d
5R9f7x5fEcftz3ASHBcWIuoXDtNsRAEuJBYixlYUDWEY0mw2E6mIYE0IDxMhqxEyj2w2mxS0Quoi
CmzXdRO2iCjiBaggAATXdWk2m4nEQ7ASisUi1WqVTqeTAD+i8DIMYySuNz3RE8aslmWhKEri0yHi
kn3f5+DggLW1Nfr9PrOzsxiGwdTUVLIqLlg0U1NTI94aQAIKCJZHuigU0hTxejqCVxjaRlFEpVJJ
9klRFCqVCltbW9y6dSuRGpTL5ZFC0XXdBCxJp4iEYUi326Xf7+P7fsKeqVQqCUgiwCZx/kzTTLxU
RBMymHRfCyBHgBXCkFfsY3rbtVptJF0pzbYR7/M8LwEDRCyzOB5d1xM2UbPZHJE7Cf+LrwawJJBl
skFAJEk4ikJu6MQqQId8Pp/Ib1ZWVqjX6wljaZxRIq4Vw5C4fVumWJRQlAjXlRPvgnHw4Z3cQw6L
rYggkFhYCPF9if19mXw+HJHijAMlacZJPp/n3LlzvPHGGzz++OMjfiVHyW8Oo4uD+1gm40DJeIzv
OznmcUbJV+PEeiSaOyKhtIvit5BRkIc+AGmJX/rz5YyGMjRvPcoAVpVlsroykn5z1LjSVI1v/Oi3
4OUg87/871y98Bz/5qPP8F+s/0s0F8oliUs7/5gfPi1Tf+b/4pd+51fYuP7vqNfP8Vc//AM0uy8z
W/X57FWDZxZscjkIdZBn2+RffZX+hW+GgYukqg89Bg4lODFASCphw3ddPMdBSjH7xLG81ezjD4//
KIBiHCjZaNu8tW0ShlHCJnkY2U4YRknCzc6+yfZuH9vxURUZVVXuAxgfFihJ/q8oBK5LZ2cXq9WK
QcVhH4ZDYJdH6BLxw4i5Wo6coXJns092qoCmybGcLIrwg5A7m13OLleRZZXoxZ+gP/XTVC7/Tfq/
9w8o9l+nUJ6jv9MhDEO+9WtXcG2fGxtd3rzbQpYlPnB5lmBgsUOVXSvC3H6dwDZRMlmqZx8ncAaY
m/fIzy5i1BqEvofTaaG5LsXFU/iDPs23XqG0fAZrdxNza5W5r/koWrFM69prlE9dYOrMCfpmRMv/
NnL6HsoXPscT37zAwaZLa72P73kEusTpoMzldgU1lHAyAU7Ho1rOkzX0YTJQzMrYb/fQFIVqOY8f
iHTCgOX5OoosYw5czIFLLpuha8YLJ89cOsHttT2sgUNGV2PplwQnlzMMuvO4vkM2U2S7uUa1OIWm
6FhuDC62e/tMV+bpmm1c36ZiNHji65f5yPde5jf+2ef5uu+6zHf84DP8wj/5t5w7cYXN/XssN84Q
RiFB4BOEPvNTJ4b3seBIg+X0uJckiYJRIozCr9p7+zFY8gg31+7xiRtNWkMKl2Zk+MDiLN///svM
8Bo/u249CuUmTz22wGV560/1mTv7HTzLP74ajtuf+eRYsDUE4CDkGSJZRBTEa2trhGGYJKcI484o
iqjXY3fy3d1dTNNM2Ati1VlINwaDQQIkCLBCFMzjTBRR7Il9FEVws9kkk8kwNTWFoijcvn2bzc1N
Op0O2Ww2YSmkV4LT2xIPQyETsW2bfD6fxPIKcMe27cRDIZfLYds22WyWcrmcGIkKNohgygiZiyj6
hcmkKHCBhAkhjrXX6yWvCzaGLMtJJK8AqRRFSfpUACSWZSUggziefr+fHIeQwKQLSNM0k4Qf3/fZ
3d1NCtVKpUKhUEg8QcYjX4VsQjBMxN/TkcaCaZL2pxHsHuEjI5ghnU4nAVpEpHKagSD8ZCqVCv1+
H9M0E3lOt9tNwDPxvYLh86hPdiJJIgDyQYAry/hSbF8np+Jom80m7XYbXdfp9/s899xzVCqV+yQ4
YvyBjKrK3Lolc+JEbLeYBkqOith9N8AJSDQaERsbMleuxFKc9HUwiVmiqiq2bbO4uDhyDY/HBz8I
PElLs9KvjU+U7yt+JxT+6Sb6PM2a+mqZUE9KhFAUBSX19whQJIl8Rkm8MSYxQSQkcqqSsDQm9VEY
RmQNBU2R4wSct5GihGFIP3BRrrXI/n//M1t/9RK1tYjveRWoa/ytxs8xW+7zny3BC9d/mkh5lqvK
n6Dd+12+5Y9/F/0J+NdfqNF98pf47Ks/x9869TsslEKkUsTeG69iRN+M/BDjfoSVJEv0HY+IQwlb
UnjJcoIRpA1dr7dM2o4XG7E+UHoTf4+mSNzYMbm9N0AbRvhOMm8dv2aFJ4yiyHS6NpvbPXqmiyLL
aKpyH/jxTkCSKIyQhmwU8+CA3vYOoechqWoiZRnZbvp6ew/j19JwXBaz8YLKuaUKgR/fN+anc9zZ
7tPsuSzUchBGnJ4xUB//EXbI8tan/zXnv+a/JnrpnxKY28xOFQj8gH7HJmdoXFqpcGGxDBL0BgHt
QciL2xptX8cgoHD6MrKq0t+8hyTLlE6cZbC/jW710UtVetvryLqB22vR3d9FIsJu7ZEp18jPLdFf
v0Nh8RSe2cWYmiU7NUt//TblhTqSusz6Rg7v2ltceHIAkotRL7B4S+W8W8WXQzqOQymXpVzMMXA8
8rkMnh8iIeEHAZ3egKW5GrvNHp4fYNsOZ0/M8SfX1ynmDc6dnCVraHT7A6IIfD+gb9n0LRtNVSjk
DLqmTd80adSLVMtZiAzC0CebyaXYgAGON2CpcYaN/TsYepZGdYGBaVMsFvnln/kkq6902d1s8fSH
H+PiqSdxXId6eQY/9NlurlIpTJHVc/QGHWRJJmcUCcPgAWNbSgZmEAUTwP/jdgyWvAeaaXb49esb
I2yMT1zb5Ue+8TIfujjPz67f/AvTFz//+TePr4Tj9ufS0sWqKC4EwKDrOqZp0ul0ksja9Aq2oPuX
SqWEiZL25xCpJALoEN4EQpqRfk34igjGidgvIZ/JZrM0Gg36/X7iWbG3t0en00kibDVNw7bthOEi
ooGFF0a6+JFlOfHuELKeZrM5ktAjvDhM06Tf7+N5XiJHEcBFqVRK9l14lAjGiogtFgWbYLwIqY4A
N9KmqQIgEUaXQgYlAArDMFhYWEDX9cTjRWxLSH5EH7muO7J6IopoAT5ZlsX6+jqO41AulxM/EyGn
EeBPOs1HjBGRrCMAnmazyf7+PpZlJZ4TAkhJF7v9fp9er5cAaEJuUSwW74ulFudK7LdgHgkT2V6v
R6/XS8amKMgfdWaJNARMjDDEkySiYT+nvT8KhULS14LlJExzx1klsUePjGnKHBxIfPSjEr7PUDYT
Jf38TtNw0oWRYAjFsh6JhQW4dUviySdjoEaakOQzDpiIaz4IAm7dusXZs2cTBtZRYMkkhkhajpMe
D+NGo/eDPEeDJWl22oPScx65sTaBKXP37l1a7Q6PX7kcF/+KlhTwcHTBrioSeU050tNEAIHJdqQo
NgB9wH4RBMjVHIXf+10Klyy++8oX2fgyfM91mcvvP8WXWk/wr95a58Nf93W88If/nH+/9Em+Xn4f
v2H9B/6l/hwa30V3JaD1yi9TnrqCF/w+SBamBcrood8AACAASURBVFdvvoX88mt86OIV+gMnGX9H
7Y+4PvwgwnSChE01TqFIjzdNkdm1HNb7AzRZmpjKdLj9aHhNwmtrPbY7Drr64Ejh8fGrKBKuG7C1
22VvP15w/NOAJKSvM0XGM0262zs4vT6SLMWymwmADVEE8qHBa4xIvUcBQ7GAEkaogOcGaNqQLekG
nJwr0W4PyGc1pCgAvUSYO0Hxlf8H5/ZLKKca+DNP8+rv/jyXzy7T7jm0TZczKxnaHRsJKFezbK51
+OK1fT6tOeDvk184SeB7WPvbWDtr1C4+gyTL6Pki6AZlQ+P//IHv4cc/9QKfff06v/j3/y5fePGL
/Ivf+zwLp2tYu5sJOFI5cxmv36G3ehNJUTC3NvHMNqVTV2h6S3zhxRtcPrvOR/s6JUdns9dhulLk
oNWnkDUo5A0KQ1+dZruP74fUa0XyWZ2MrqFKfTIZhUa9gTWwuXhyikwmSxSB43i4nk+jFi/i3NnY
Y3muTn9gEwQhmiLTM30aUx2qVZP2QYkwcinla4RhQBAG5LMlCtkyjjegWpxGUzUOOts4ns0f/FYH
VdXohBs4t7uYBx6yNlyIUwv0Bx08zyGXKSBJcgyQyKMPVBmZMApRhmMyCP0HsruO2zFY8p5unjfg
5Y7L01PZ5LUf//bn2H1zjfypBS7n4FMvXOXntwY8dXKFv31uilN5nf+fvTePtuy66/w++0x3nt78
6r1XVa+qpJJKJZUlI2Q7Nhg5gMCWO8TMDSYN7oVZNDgxwyINadKraegkJGnotdp0AivdgjCFEBoD
tvCELclGxrYsqTRUqaSa3zzcd+cz549zf+fte9+tQbINsvS21lO94d4z7LPPufv33d9htbnDh598
iQ+vdtP3TU1M8hOnFrinmsXzPM5sbPGHT17kdCdM76AbbeNXHnwT9dMvsDYzw/3TFQqhx5cuXuZD
p1epR/Det7+R94w7wCF+/z2z/C8PP8HjrsODJw/yjukK8wULwoAvXb7Kbz+1xFU/HvmeB77l3kEZ
jmHy1mOH+IFbJpjPWmw3m/z5s+cH5Ek3Orab64P99npuuq+EJN1kMpkU6BCmhhT5cRynBbvQ/aXo
FUaIFOu9Xi+NshUDWTHzlGJbAAJziLKsAzkyEZS42VKplLIm9AQY2Z6e1CIGseJ9oafhCADgeV7q
1yJAjkTUSlSxvFaYGVLAixFuoVBIz00YM7oURorCIAgG+lIYJrJP8UHJZrNks9nU+0UMb8XLRQpF
kaCI/KXdbqfMDSno5JwF7JD9CNtDAA2JIBYQSY5Fj5cenkhL/zcaDTY2NlhZWRmQF0nssV64isxI
xoywUlqtVprANNw3IluSvpPCVY5LjGeFkfD1PtlRJEk4hSiia5ppcSr3immatFqtVKZ01113ceTI
kRT0HPYrAYNCweCxxxQLCwrbjvF945qRty+r0Bgq2AwjScOZm4v54hcTfxTLUsSxMSAJ0oESfcxE
UUStVuPFF19MTacFjLkWs0RnIchr9eMbBawMRwLf6Dk56uu10KRf5JkFUCqV+NTffJq8naSttDeW
qc7PYZuJF8moGNgkLcfAVIo4FjBEjRzbjmWmP42KCh4AsgwD3w/Z+dzH4DAUfJMv9mb4F//1z/DH
f/FBHqq9wHedfD9YGcYWvwPz6T/jc8Yz/MTsMb4l/yR/9vAmZSPiTSdD7nL/gNhIEk+cLZPg3rtY
nJ7BD8KbYpVAwu7a6XgEQZIOxHUYIoahcMOIF3c61zV0lRhiow8oPHWlyXrTTfvpRkBJFCcmpIZh
sLnd5cpSA88LBuQ2N1sEJl4koNBSbkyTwPNorq7R3d5Ozu0a2077Silwm8RBtx+n9God/wx4ccRx
jGkbbPQNcCfH83g9n2oly/mlHaaqOXJOj+hzv0besWmqKmuP/RbrjYCm72CZsL7TY3GmiFKKpc0O
TTfgFstkomjxbW++jT9ZfQvjYRbld7CzFlHoUyndQW97HbtYITt1gN76Vc43dnjk9oP80rvewvN3
H2U8Y/LXZ66StwwCz8OwEv+SwuxBgk4Lr1ln+8xT1G69M4nZnjmEoWIMM+TKksEbqieZKpyjriIM
FKZhMDdVpdHsUCpmUUqxvL6DY1vsNLtMG2XmpsfotFucfNN30G1uc+H0I1SmF1k8+Va+/Jk/o9Hq
cNuRWTIZG4gJwpAj85O0uy5W/7PYNA2q5TymYVGuLVHfmuqze31gl1mSzvsMkzAKGStPc+7KaUoF
g2qxyuHsbaAUhVwOz3fxA5+VrcvMjh/EcXKs15eI4ojp2jxxHBGEQR/wAzfskbFzXN24gGVaTFRm
r3lvXe85Ofx5tw+s7IMl/2DdcSTv4Llb+roObzt1iKcvrPAHSz5nd1zuO3kb//x4jSvra/z709tM
HzjA+956J7VHn+ah1S52pszPvvko9sYKv3q6Dtkc7zl5iJ/9xoCf/JtLtOGG25D2tntu4ekLS/zG
Z87jjM3w06eO8oFel395tsH/+/lnKbz5JPexwa8+fpXzLXjwv7idHxiL+PBTL/LbvZD56Wm+/5ZD
/ITb5pdO10e8J+SBoenEW0+d4OeO5HjkzGUe2vQ4vnCAH7nvLo7Yp/n1842bOrab6YP99vpusqov
D3wpsKQAF9NSKXD0yFcp3AQkEI8L3avEtm1qtRqmadLpdAZkIToAoRc7AgL0er20CBazVgEu9GQX
id/Vo4xlP7IKLCai+io6kMqFxJtFWCP5fJ44jlPJkaXp2QVUEZBImDAiMRG5iIAEejGqe3wIcNDr
9eh2u6lXiuxPfFOkL4WNI8csbA0g7S/pf4nqHb7WetRv3E8sELNV/RiFESTXRGRRw0WoyI2azSar
q6tsbW2l40hAK7kGIt0SE1pJcdHBEjEn1QEvuT66342wKYrFYhqHLPKo18IEJpYV+CjCt20MLTZY
vHgE3BSgUQyKdbBkkFWiOHfO4Hu/NyYIVMoA0YucG8lRrgUkDK6WK6IICgVFPg9XrxrMzxuE4WgJ
jgAletpMoVBgYWEhvbfkntE9buRnaaPiovVnin4PXJfJcI1JsvT9axUsWVpa4vTp0xSLRRYXFwmC
gIOLR+l1P4tSNSxTYZsG/Vr6muNAZCDXIuoo6Mu/1ADVYOBaxn3PBAxyuSzPPXeGjce+SC4/xbtY
YyynmM1ZTL/5W/n0mY/xxS/8FRnrm1nOtgkyAc3SBi94Ppn2rfz+mc8zcdc4M7mf5nKwxdVVh2+/
/CH+K+cO3vyzH8AkxPeD6459vTCK4phWz0/OsS+Pu1Y/WIbB2Xqbrh/2+24vYJdum11GyXrLI9OX
M91IspOk5Sj8IOLC5W02t7oYhtrjS/JyQc+Yvu9IHNNaX6e5tk7k+xh9yc3NbbuPrL2KzUsExxm4
p+NExuT6AcQJQBaGEfmMjWkkYKCyskQojs2WWK73mJ3Ikcm4YBjcsVhLZDxuwInFMVDw0uUGs+M2
T6zD5aUNaG5SXrwNv9PCyhYwnAyZ8hh+p8XW6S+gDBO7UOI3Pvkl7v+Jd/Ndb7mH9/7Hj7Kk8szd
cQ9BDGa3TdBtkx2fpre+TBxGHHzHd9HdXCVTGcMwdz2fJm67A9O6QmSCGSumx8vEMXT7rBDTSGRx
GdvCMBTHDk9z+swVnIzNwmSRbrvByW/6PoIg4Ng3PMDWygWeev48t99yMPEraXU5t77K8cVZXC8g
n83g+QHdnkcmYzE1VmJtc5taoYhpRiOfD0oZmIZBEAYYyiAIfW6ZvxPLtOl5HTJ2jiD0ubBylpna
ApZpMV6eThaBrGz6mbCxs0K1OI5pmERxhKEMNurLzI4fopArc2X9RSarB14WAzUFQFXyOZACMftt
Hyz5WjfbdJjKZ9KivZDN8LbFBR6oWnzp6Y2B125vLvFrX0wK/EK+yq8cq3DmpTP84hObCdPiSp1t
806+/9QcH/34OSgUmDMD/vDMVR7f8oE655sBD0yAbUAhW+X7b7CNtf7ca3t9d99sXeTh+THuP1CF
sw3anS6rfgSGy9WWC3aeedPnk0+d56GLLQCeWG1SGytx/0SZAvU97xk2sq0WJ3jvkRJ/++Rpfv1c
Aow8vrzFKqd438kFbr3yLGf9+IbHVrtBHxDt33yv9zYs0dBXZ3WDTim+9NV7eZ+wEqRIl8JYKUWp
VKJYLLKzs5Nub5gWL0W/ABXCZNETZAQUkYJbbwKC6GCISFPE9HGYaq6n7ggYIcyKbDabTpwlgUfO
WUAOAYokZldMTZvNJo1GI41WzuVyKaNDij4BiCRtp9VqpR/E4p8iAJFu2CnAgRi4Sn/K9qIoSo1i
xXdlOCI1k8kMAElSbAsI47pu6h0iTBg9AUSAJp3VI8ySzc1Ner1eCvpIrLQcnzBWgBTgkOPX9wMM
9LWAYrId/fj1KGMxeBXGxWugisWOY9oCOGmg0/LyMpOTkzQaDQ4dOsTtt9+e3gt744LNPqvE4PBh
RS4X43lgWYNyla9kpWygmIyi/mK74pZbIp5/XrG4mDBLriXDGQZQhC1Wr9dTDx0BPXSGiS6bGLla
r53Xtcxeb5Rso8ufhr1LXgtNnnVHjx7l6NGjAHzyk5+kVq0mBX8mR7YwrRW8gyDHV/uzKIpjyvks
lgn1tofXc1k4doiJ+76R+dLv0m1bvHnqCuef+3Xuqb2PXmmHEyfvYGJsgf/zUw9RL3SBkI83Gjz7
3DbvfvO386Xmaar/8pdpv+ftzN23yMa/rfLxb72LW3Mx9rYL1wFZBxgHpkGj6+MGUZ9BMxiLOyC/
MQzWOh4rnR7WNZJvhj1KnrzcZL2VMEpGpd2MTrpRNJseF67U6faCr9yXRI7TUPR2GjRX1/A7HZRp
DkhurrXt9NjiGDJllO1BHL2KZThx/7B06VFExjZY3wl2h3wUM13rM95NReiFRGFMJmeRayvaXZ9j
CxUiP+LZy3WOz1eIgO16l0reZvFAGaVcNsxxgkyF6PKZ5POx26Hb2iEOQ8xsDitfxHAymE6GzOQs
/+5738Hm6jK/+vQFfvO738bP/PHf8MxmB9VtELguTrFMe+kimdoEWdOivXIZp1ihu75E4cAi9TNf
xrRtckdP4W8s0RzrkSmVCYKQOIZquUCn4+L6IbZlUCpmMZTB0mqdybESm/UWLy7t0Nj5GK7r8abv
/KecefJRfvff/Qtuv+02aqU8XdejWs5Tb3bYaXaYHCvhegHdnk8umyzabNZb+D5stpbI5BbptCYx
zZBddpmBH7jUe01qpUnCMCDj5Gh1d2i0t5iqzoFS1NubWKaNaZgEUYBjZ4njiFppkoTNZrCxs5JE
JLstHDsJLpibPEIUhdSKE0xUZnC9bvJEexmR4YYy6Pldel6HWnFiHzDZB0v+flqxOsW//Y6pPb9/
aekKHzpXH/jd2k57F1QpVZk3I/7gsp6YE3L6cgvnG4rMZU1ON5uc9y3e+013cvLiBo8sbfHE6joP
9QkrUzexjbW+VGWt3tJYGBGrbgT50ZfN9zv85meeTo4zk2GuVGCxWubuggU946ZAikKpRC3s8dBK
e+CB/sTFOixMsJi3OLvj3/DYtm/QB/ttv8mHgO/7KSovMb/DjAgpVITVIKCDRPBC4isi8owoilJ/
E2EF6GwUffue56XyCpHuiExEzFj11BMpWHRZjb6KLICLeIYIi0NfhZaiWwp+iaQVnxABHYrFYurB
oQM8AiiJ/EUADPFAKZfLKXNieDVa+kFMWQUUEC8PSSQSMGM34SBKgQY9nln6RwAIuS7DBaCYpuox
xkAKlMj2dWbCbvTsbp/rY6DX67G9vU2j0Ui9RbLZ7IBPjfRn+qTtH69+zXWGg36thhlIIp2S6yoe
LDpD6rUgwwGw4hjfMDD6RZncO5JqdNtttxHHMaVSKWXzXItVcumSwYMPJmk1pqkYlkB8pX02XECF
Idxyi+JLX4J63SCTMVKj1xt9+b7P8ePHefrpp1laWuLOO+9MAUDxL7mWv4QOAA0DI3oxqDOtbuRz
M8x8GZa4fb0//4fNb++///7070EQgAoII4sgjMjYJlE8Woaj0n65XmkKQRiBSlgH+n0fxRGFjM2f
/PWfcGH5JX7ye/9bwigin8kx/aPvp/i//x537MCRNvyzu4/j9LK8503v4unnnudFtcG/+oGHWP7i
b/Kfn3mO73nn/8DVJz7G2PxdfI97le0HIjp33M5/88SHyCy+hS+/78fId0M8TeZ2vb5JvEoitlse
Rj+ZSo16bRRjKIUbRbxYb2OgrssMieME8Diz0malkQAlwjThBkCJaSpW19tcXmqgGPQmeSVsEkgk
N36vR2Nlld7OTvK7IV+Sm5IsKQVRSBxHr2oZThQplAlXN9qcdrd5w51Vgm5A1rG49WCV0A/7CVAx
ETGb9R4vLDV488kZ4iCk0XBZr/e4/XANrxew3XKZrGRTw9vV7S6VgoPnh2QcxROrMVY2R+7wcZRp
EYUh3s425cXjiVGuMhi77Q2EMZRMWKk3+a1PfInTTz2J0foO5io5vrzeIqMUVjZH6Lm42xsYlkWm
Mo5drGBmshSKBwl6baxsntL8Ybqey4GKQz7rUG/3cEyDbNZhaW2b9c0md9wyh+sFWKaJYSdzpFql
iGGavHD+KqXyIW6559t49ot/Q3V6kVvecD9HJ3r83elLlIpZjpTyVEt5AM5f2aDb87jz+Dyb2y2I
odnucujAJBs765SqG/TaswRhD0P1fW2IUf3/4ijCtmzOXT1NIVui53X791/ARHkGwzDxApeVrUsc
GD+czBnCvjG/26KYS5JtdtpbzIwt9M1qfRzLYa1+FcuwqZUmCSIfFb+8zz7Vv59fH6Hx+2DJq6K1
2tv8zulV2n1mvud7XG22WXP3DsN2exfSKGQdHCx+5JvfyI/seWXAfNbgiU6LX/vUs7z31CHeemSe
Nx2Zh9Djo0+e47fP129yG8mBtXvDKTXXRztunZ/jA3cvMO8kyMiVepOkTLg5inOtkAFC6u7gfrxe
lzYW81kDdrjhsfn+9fvA37/39lv/A12XsAggIfGwUtwKo0D3F5EiV9gYAkrIqn+hUEiNUXXjWAFm
ZPIlTAXxyZAo416vNwBO6KvKwx4Osl9JbGm32+l+R8WG6kwGKf4F/AjDENu208QbAQx0sECOWdgc
sl2R3+hpQXrBpcsI9PQbAR7q9XoqBdKjh3XgQIAcAarEd0VYLHK99EmAHLtIqIb7RkAW2a7OANAl
CMOxv2K4KmwZkWoJ20NnFMk5Czgj11HOU/ezEbBnOM1E+l3GhFwbXaLxSuQkrz7ERGHFMYEGLAq4
dN999zExMZFKkQQEE7BEABPbNjBNA8cxeOc7IZ9XRNFuCo5eCH6l8qVdn4Zk4htFYNuwuAjPPKN4
y1uSVBzDGPwaBZbYtk2j0WBqamqA6STXWH9+3ChWeJTXyXCheLOymteS/EY/p+F/wzAkjGJsq/+M
NMAPIrwwJufE16DQJwalfhThmAlgMnJMxcm2iEezGhxl8p8+/h/4zJlP8KMPvJ/8RAk6Ec2338vl
X3wDree/yF0/YHHv2Kf59KfO0bv7g9w+63Gw+1uMXf4QP/SNHf7RNPzl8u/w//nrWA/9Lb/2wX/E
1KGHOXAlQ+65+8g9/BHeXCvjN3sYGug2CjyQNCDLUNSbHl4QYV0n0SZWyWvPbLbpBqPlNwPna5lc
3OxyfqOD00+audaK9+59mnx/8fIOqxttLNPY46fwckASAbriKKKxukp7fYMoCG6KSXKtY5RnWPqe
rw0h6asxA0rm10GUsHmkEDYUZy5uMzdeIJ+ziKO+jwswWckSxxDFkM9YHJsro+IYJ2dx5fwWa/Ue
D9y3AH7IicM1wiDGNiI6QYYvcAvh+kWyh4/SWrpEplIjPz2X9Ldp0FldwtvZxilXadgZfvWvv4jt
9Thy5Ah/8MRLNM8/x/zdb0Zlx+htr2NYNrVb7yIKfCDGzhcgjomCANOyKR08BoFHGBlkijkyjsnp
Zy5z923zhGHERLVIKZ/lqTOXGasUOHRgHM8L8PyAdselmM9Rztvced9/ycc+8SmWvvT/cNebv4Nv
f/f38Zk//Q1yWZvZyQpX17bxg5CDs+OEUcRYpUCr7XLh6ga3HJ7h8NwEnh8wPTbO+uYKG40Klmli
mTaVwjhh5GNZTgJihD4mJlknRylXYW7iMF038VOL4ogojDCUYmHyKEoZqT+JaVgEYYAfeHTcFtO1
eVrdHRwri2MnrNpKYQyFIorDFPi42edkFEdk7CzZTJ5wn1WyD5b8fTW/1+bxK1s3550R6aCBh4fH
hx8/xyNNb89Lt5sJDNDuNPjQ557mQygWJ2o8eOIgD9xzK6vNJ3n8Jrfxclu1MsnP3neI9uUr/Nyz
y5xt+YDJe99+N/ebN7eNds8HM0c1Y4AfaiBRjgIR2y/j0K7XB3+64e7fffsNIDXQ3F0VDtNiV1gY
AjDoYIXOPpBJtpiIFgqFdNtS3MrrdIaKFEjC9BDJicgrBJjQgYBRE1Vhfsi2dMnLsMGjGkoX0dkL
EmcsbBNJ0RGwQJfT6Mkt8iVAi7BldLBCBx30ldudnZ3U5FWABGGZDBp1MpAso3uY6Cvvw8DSMECk
m9bqTB199VCXDwlgItdGimLXddOkJImglqjjbDabbk/kVdJXwvgR6ZZlWVSrVbLZbDpWBLyS66Iz
kaQPxZxYZy3l8/nXBFii4hgjjgmTTkyvW71eZ319nSNHjjA7O8vCwsIeVolSFpWKwUc/ahOGBidP
KhYXIQiEVTJatvLVKLp3fYESbf+tt8KnP20Qx8JMMvYAccNgiYCF4l8isdA6GDYKMLlWUXizKTrX
OzdjCLR6LU6UB6KU9TjcuP+5ECXWrnGCdOzpwyCM6IURJcdKI4b37iPGDaK+seZggW8qk3YY8KEP
/B7tVoviZJHGTpPtzQ0O336Elz74c3zkn/8Cd2QuwHG494rHbz78CR5463FatR/ktsKnefTFbT7l
fwd//vRDFBT8wHfdTmZimrf80UUq7mdx/+IjdIsFjJ0uyrZGGv2KjCaKY4IowjQMul7Idsfve1aM
ltREUZL8sdpxWen0BtJvhmU3URyTsQxWGy5nV1sJUKLUdY2IZfxHUcSLF7ZoNN1XxCYZuFeVQhkK
t9misbyC1+lgDEluXg9FYRhBOe8k8cj935XzNl0vIJ+3QcVEQcRUNcfUWJ7QCzEMRRBFCfgHvHR5
hzcen8R1A8Kgn5zUH+u2FfFSu8S6MUax0sZt7hB6PZRpE4chyjCIwjCJA166SP3cM0zceS8V06Tb
bWBVJygHHtmDR5JxEkXEUYiZKROFAUGvjd9qkJ86kCwkpCBYRBRDIWOys7rMs+EqbzxxCNMgZTbV
+9KZciGXXvO1rSYHD4zT6/kcPTzP6vOf4vLZi7zh5B2E2y/y2T8/g+eHjNdKXF7ZZnO7yT0nDtPp
esyMVzh/dZ1iPsvsZBXHNum5PpeWt1icn6RcDjkwY+F1ZlGGRxgFKegREaeeIHMTi4RhkAIl+rPG
Mh1a3UYitbEylAs1um6bjJ0j42Qp5aqJOXTgkXMKfVgsxjKd5LuXOa53PYsiCKMBmed+2wdLXpWt
3mywFs4wl404f6WT/v7uY0d49yQ89IXz1KYP8d/fU+JDH3+WJ9yQ8xtbPPQlk3u+/RbmswYPb914
G/Xo5mDwBLtIPrBq1RrTePxGCpSAnclxa8mCzuj37AFq6jtsM8XbZgo8ek7MXBUnD1XB63K67d3U
cS3OHr5uH+y3/SYfAmEY0mw204my+IdkMpm06B8uhnSJhhQvurcJkEbYDstvdJaGmHJK4St+J6Zp
ptsRQGCYBaH7GOgpLhInqzM7hj/UdO8RHcSJ4ziNZB0GOwSE0IGE4UmtAArDcib9dbppKiRyHvFn
EHaNHoerS3HkX52lojNbhif9w9IfSORSOvChX2M5p1FmnDqgEkURrVYrjR2u1WpMTEwwPj6eJpgI
wCL+LAK8iKFrs9lMjWlN06RQKAwwj3QTW73PhRmjgyk6UPKamcBoscECTna7XUqlEvV6nampKarV
atrHjuNgWTaZjMnyskW7bdDpGHzkI4p3vxvm5yGKSJklXw2QZFTBuMsuUUxMJNKf7W2DfD6i19vL
LNEjkYXV5DgOTz75JAsLC5w5c2bA8FX3LLmeaesosGT455thi+jxxvrz6/XSFBDG0OgGjBcdINoT
+SsMjLYXMpm7NhtBKYUbRLhB4gsx/JogiJiYmmRyZprQd3n0Ex9hbfUq3+S/i7f/4+/j3IFFnv+p
H6L2dy/w+aDDD/74D3Hh8gW2gwnm7LN01TJPb73E5THFk6dibnWf49z/+K9ofNP7yf72h/CCELPr
E9sWAz4V+jPcMln3fLKmScFQhHHMRtNNEnCH4n8H0m9UP/2m3sFM43ONPRG8AqrsdAOeXW6hEmTq
miCMfO6YpkEYxrxwfptWy31ZJq57WDNxjDJNojCksbRCezPRZ5uvgE3y9dwMQxEBty1UODZbIvJ3
5amOZaITY0zHJPRD4rBP/FHg+iFLmx2OLlQp522eu1gHYg6M5SkVHOIwAaTCMKThKUJlki2W8Tpt
nFKN0HdxN9cwbJs4CikcOIyZzWFms0S+nwAiuXxitutkyU3PE7o9ojAgNzaN32kmfjK2g12qJJ+P
honfbuA16zilCma2gPJ9jk9lmTQmUdZuTPwz564wP12jmM/g+iFRHLOyscM9Jw6xsrFDGMYU8g6T
tRL3nrqFnhdgmhZZByaqRS5c3aBWLqSOzspQdF2f+Zkx4r5Rru8HmKbB4bmJvuwsZnJqm0svTWGq
Yalb8vw3lIEXuCgGJddKGXh+j+3mBsVcGUMZtLoNCtkSfuDi+j0y9mxi7BrFjJWmWN66yNzEIkEY
EMfhngS4lwMkvxyQfb/tgyX/oK3d2eYPLrb5uVMn+JXJNT55eYfq2DjvuWWCtcsvsubHsFOnbczw
gbce46FnV9nG5h3HD1Hw2jyy5dHu9G68qT8VjwAAIABJREFUjZs9nrZPYWGM7z/W5fONJi0mePDE
LGvntiiUStx/bI47HYOWa+GMeM9HLw6a2dZbG/zhhQN84NRt/Gz2Mo9suhw/MMt7FvJ86elnOe/e
3LGt3aAP9tt+k0JAVqsEbJDfSSKMHtV6PWPGTCZDPp/HdV3q9Xoq4xEABHZNUyVlR0+bkeJYoonl
78BAIowAPPK9zo4QiYoOxOjMieECSM5JwADd70M3stVBAj1hQ45DL/Yl8lRntkiqix51LEk0uVxu
wC9F+kNAIt0jYThhR1gg0vRj070/5BoGQZACMtKnIh8SgGNYIiVsHSmE9WsxNjZGsVhkfHyc2dlZ
yuXywHGL94q8xzRNyuVyGhNcr9dTaZHe53oSkPSZnKcOmgiIYFkWtVoN131tMOaUJGRopree52Hb
NjMzMxiGweHDhwckOKZpUyxa9HoWH/uYTa2m+O7vjnn4YUWtpvrsjtExrV8NZsnwqrX4Xx44AGfP
GrzpTYpeT11TiqODJq7rcuLEiXS8bGxscPDgwQEGlQ6Y6AXecIGoG70Os5ReaXTw66r1T7fthQnA
ECfskuHCQamYbddjIc6OBGzldVEY0eoG5JwMyaJ8PPB33/chjsiO5Zg5fgdB4FOqVQm7IU9sXGXr
/T9N9o/+ive0ltn+5Q9Smz7MLaXPcOs8fHz5Nn5p43FyGxBdXeDqm36QR//pFPXFKb5taZnJ8Ul8
s+8DxF4DVds0Wet1+cSp2yh88/288/ceYuvKDj0vxByS1AzfQ4ZSnN1q4gYBZqGIZ1lk223CKEw9
TpKIZYUfRpy+2sS/jqxn95memMv23IDzl+q02z6WZb5i2Q1KYZgm3Z0GjaUlfNd93YEkg4BUIsPx
ggjb7uuFwojxSjaRtIQJO+TMxW1umavsRj1FMcWszfHDNYhi5ieLiUTEMpJNhAnQr0yD+laPTy45
CUDldzGdDGaxTGv5EhgGve11qkfvSI7J98hPzWM4GYJ2E7+5g5XJ07j0AoZl43ea2PkimdoEndUl
KovHwTAxMzbEEXEcYuWKWLkC289/mdLicexCkVbHJUuXSjVhllqmwd0nDu0yJJTP8lodw1A4tsXU
WJmrq9sEQcSVlW0mx0rYlskjXzjDeK3E0YNT5LIOruczVi2mXjvKSFhmxNDpuuSyYr6f9HUYKpa3
zmJZx4jjXe8e07TY3LpMpTBOLlNAYfTnZKF2nyXME8u0cOws+WyR9foyrt+jXKgRxXGfqZJIpqIo
ZLw8zXZrg0K2jGmYA1K2/bYPlryWH288+sRp/OYi339sjA8cmMHzejx+5gV++9n1RNbTqfNrj73A
j921wE+85QROGPDSVp3feOxi6kVyw23c5LGcPr/ElQNHefepRbY/9RS//qUM7ztxgH+9MM92s8kn
z5zlF5nhl+/Op8axA+/ZauzZ5ie/eBqvucgP3LLA244bXNnc4T994TQfvti4aa+R9k30wX7bb+KD
oBu89no9MplMCgxIUSOpMMkK9m7ihqSSFAqFAcBCinXdlNFxHPL5PMViMf2bngYjxZDE/YoHgxTw
UjzrRqbicyFFtk4nHzZ8lImgMFeERTNs9ijv0RN8hmNI9ZQWKVgFKBBvDTEzFTmSFPzChCgUCpRK
JUzTTI1ih81k5Zz0Y9BTaoYlCXLcuomrZVkUCgU6nU7ar7qJrr5ar8ux9P1JP0hqzsTERBo/fODA
AaamplLmiA5qyXgRLxV9/3IMURSlHjX6/gW40gEhHeST18l2O53Oq3cS1F99V+w6WEX9UnGPoaMY
SMoEVClyuRzVapXDhw8zMzMzwCqxbYdczmZnx+LRR23e/e6Yj3/c5I/+CL77u8G2k0hfnT781fAq
GQYV5D5LAMqEXXLqVMyf/7ni3nuNfsFpjPTE0b8X8LJer3P06NFUHqePdR0wGQWWyHnqK5PDYODN
gB/DkcE6e2k4svjlSny+PgpKMA1Fo+vjBVFfirL3XE2laHoBHT+kYPejxkf4ehiGotkLKOctbMsg
iuKB62IAYS7DR376g1imxQP/5n/GdAN6Qcw3nPoGLl0cI/cfHqBUrnGy3sD/u8/ibH8vYbtLbesZ
Ct/0XjbGKjxRKvHOH/9hDn7hKarnl5iamMKPol1j1hGslziOyZomufveQu2Ok7S7AdttH8s2U+mQ
PtZS7xHT5HKzw3qri12usPkn/xHz85/B/8X/lWImSxSGxP0CTinFs0tNWm6IYxp7JEvD0hvTNOj1
As68uEkQRFiWcVOgxsBr4pg4ilI2yfbVJTpbW8nnx+tMcrPnmvefv4pdMCkCwiDCUPJshrFSZmim
nvy+2XBpdn1mx/NgGKxtdbEtg0opQxxEEITUaiUubB8jageofgR36LnkJ2cBRWnhCL2tdQzPJTsx
S2flEhBjF8o45SqdtSsUpucJfY/c+DROuYbb2CI3Pp1IWIggjvYAeeN33kvs+3gh4OSwlI8fJwsM
V1a2qJSy5LMOlm3x4qVVKsU847Vkbnb6hassr21zxy3z9FyfYj7LSmuHiVqZowen+LunX+LYoSS6
N5exU8gzCEIcxyIIQrZ22sxlnZRlEseKKIbDB/NceaGH6+YxjKi/MBMwM36QKIoJ+wDJ+eXnODB+
mIydJe7LZyzTplIcJwwDvChgrDxFFIUEYbBncUspRcbO0ejUeaWmOcOg6OsJTNwHS/6B2+984vP8
zk2+9uc//LcjQYrHz73E4+deuub71rY2+bW/2bwu0HGjbfzSnn3HPPy5L/PwwH7W+e8+vL77i60L
/OT5C0Pva/A9F6/9nj/ds5+QR8+e49GzfIXHdqM+2G/7jYEVXYmgFXBD2AjCJJAiRlJPxNAzn8+T
y+UGImGF3SEFr3gRFItFisXiABghK4oiPZECX/Yjr5WCRdgGowxX9bQWAVB04ECORc5P9zkZJXvR
J656hK1+/OI30u122d7eTot2wzDo9Xp0u920EJR9OY5DtVrlwIEDqSmq/G1Y8qJP5vW/yb8602a3
WDUGwIVyuby7gqol7ejXRwCxYeaKLqFyHIdSqcT4+DiQyHpqtVoq29KBMt0bRgegLMsin8+nMdHS
zzprRQfT9GOSv8k10METAZpepTPz1Odwpz/Gi2GY/k6ffil9Qt4/vyAIUqaXXAdhYVmWQ6Vi8cgj
NrZt8LnPKYrFxGDVshRBkKRnDMflfrUnfcNjNAigXI6pVuHMGcXx44pm8/rMEjlX27apVqsp88h1
XfL5/IDJq7DBrpdoMwwkDjNqboZZcq00nGGvn69Vv/5DgyWGUnTckI4XUclZhFGUSAOG+skPQ9a7
HiXHJoQ0SWSYxh5EEVttj5lKdq/RMOABjc99FuKYbhhSCEMC4NixBe68dYGdHnh+yOb4OOrkIjGJ
sPlgAKYJEz040etR7AYULId//Pvv4xeCf8n7vvtH2W72sExrZEEUxjEFw+LBP/1jum1YvrqNaZkw
4i6V55llGGz3fF7c6WApRWha8NJZyl94jC3Po5zNE5E8m23L5KX1NqsND8cyruPtkhjmmkYivTl/
qU4QRCm75eUAJSlQaFm4rRb1K1fxe73XLZvkWvd4KrmxDFbW2nhByKG5ClHfn2SyliMK9zKLnD6T
ZI+JbR8YNFTEkpvjpV6JrBEmrCyRXom/SD+yOA4DiGOy4zPJ9apvAori3GFC38fMJYkzravnyU3N
ofKK0O2iDDMx6R247mD4PTpxlll2+EbjCrHlUA9BxSblcgHDtgmUSRTC+HiVrGNRKeZ44eIqlUKG
6pFZ1jZ3uPv2Q+y0uhTzWVY3Gpw5v8Q9Jw7R7nlM1pKI4VIhi2EoVjea9LyAiWoxAVHiGNs2WVrd
xnEsxislrGxAZXyZlSu3olSyZCBzDcu0WauvYCiDYq5CxskRReHAeN41WFWEoY9l2gmDawRoHUYh
U9U5wih4Rc9m/dllGGZ6LPttHyzZb/ttv72OJgkCmOjFte5doZuJChNDj4gtFAppIo4AFZlMJvUc
cRyHVqtFFEWpCajjOKnnhBR98kEvTAQ5Pl3GIUCFGKGKuakO6OjF87DJq5ybblQq4MyoFWT9/PXt
Sl/JsSqlaDabrK6ucvnyZer1esqgEP8UYbKI5MZxHCYnJ4miiOnpafL5fCpZkkmBnN8wG0AvAoV9
MixL0ifCAugIqCPnIwyhUQa4SpOA2LY9UJzn83kymcxABHOr1UpjjfX+lOK32+0m0HGjMVBc6gwl
OV7xbJHrrjNMZIzpyT8iAxOfmFdt1QmESvFjS0vYcczvzsyk7JFrJWAkJowGlUolBfSKxWIfYMuR
zWbI5Ww6HZu3v13xyCOK9XXFu94Fk5NKiwseBDS+Fv2019sokf/ccw989rMGJ04YKLU3FWeYWSIp
SadPn2ZqagrDMHj22We59957U4Bk+B4d5SMynIijH5s+Rl9OdLCwoizL4sqVK2QyGSYnJ1leXqbX
67G4uPiaKkCTIRgTAetNl1rOItDGs37NTaVY67jMF7MDQMnwM8lUilYvoG771ApOQtuX6wUU/Yh3
PPw3AJSCCC+OKWQdHvqz/5sra5f4Z9/3QUIFpu+junFapGZV34BWGUQx+HHCnDg6cQuT1SnCfqrJ
KKBE5AAoaC23WN1xwTT2AD67Zo8JmOGFEc9t9Z9pponValD8qV+i/v6fZzqTIwh9YsA2DdYaLi+u
ddLEoJERzOJLZSjCKOKFl7Zod/yUUfKyZTeAMgya6+s0lleSMf06ZpPcEOz1w4QlAsR+mCQfxzFh
MCRdNBS9XkDXD5k7UCbs+igVM1XLJWPJUJxfalLJhJw159jsxtRyEMaqH6ccp8yWwO1i5Ut015fI
VMcTEEUpsrWJlIUCijgIkhj5XJ7O6hWyY5O49U3MXAGnVAEB32MwVUg7zjKtmvxP5oc55G7Scy2U
aRHE0LPydHwHAsVamGFps8nswRk6bsDC3FTikRPFXFg9w3arS7mQpef6TI+XaLS6XF1NpDndnkej
1aVSyuP5AVEcc2CqmoCeftAHQSJqlQKGSsa0ig3KYytsrh4kDC2U2jV9juJEOmP0PycCLXlmj9ST
GNMwWd2+wnh55pr3QRD6r/izT78n680NSvnq/j2zD5bst/22315vkwMpmKVo1r1EpNgVcKRQKFAs
Fslms2nBJoyUbreb+nWUSqXUCyMIgpSFUiqV0tVx8WGQglfkKEC6f3mdrKTn8/m08O52u3ieR7fb
TT+89EJGDCH1oki+H2ZhyLkOU+2FeSH7l/dLcS9yoo2NDdbX1zl37hxra2u4rpueix7HKwCDrJKL
h4vjOOn55fP59H0SsSvAkF7k7a7eB3uKEt1QV0AR2bfuD6JfX92bRgcystks2Wx2wJC20+kMsH26
3W7a9zrIIvtoNBo0Gg1M06TZbNJqtVLvFGAgdlgK5Xw+nwImAvDo4JgwVARws207ff+rFSwJlKIQ
hvz8lSsA/PnEBFuWhT0kWZDSXWmSsGazyfb2NidOnKBQKPQBqyyFgsNnP5vh6lWbb/5mOH5ccc89
isnJRB+u+5ToMrOvzSnGQ1IfiCLF7GxMECh2dlRfEnR9KY6wvSqVCkopqtUqR48exfO8AXNj/ZxG
+RMNy+j0194Mu2RUxLCkVy0vL/PII49gWRbf+Z3fSRAEfOpTn6LZbHLnnXemDJjXQhN2yVrD49B4
HuMahocK6Pghl5tdjlWLeGF4bYAe2Gx6GIainLN3PR5UkjJS6z9v/DAEBTYGD33i/+CLlx7n/Q/+
NGY5QxSHoHaNYqMhIMzzQg4vHuUjv/EpAqDd9fbItvQC2DQVra7PatNHmcZIoCdlFfV/Pr3ZpBcm
DBNIkm6yQN52+qaSCVCy0ws4fbWZ9F2/WGaEoat4KgQClLS91KPk5QAl6XgHti9eolOvY2gMvdcK
mPcV49eKQTCVXfBNXSfCOY4hNhXPntvmVmJ2mh7VvM14NUcYRpixwcxYgazjs7Ic09neZLwwTeAH
KCNhRYjZbndjhfz0PKWFY7RXLpGpjNPdWCNbm0SZFvRjbmV0ZypjiclyHJObPEAcR0mqTj/e2FQh
O3GW21njV80PM0GbFlksI6bZ9ck5BiW/QbkvDZ01FDPFkM7KBjMz4zx1xSUybXZCi/tPTPHc1W0y
5hizkzW+8MxFTtx6kG7PI1/IYyo4dGCcMIywDEWlmKOQc/D9kMnxMkGQPAMyjpVELkcxYGBZHrbT
I+iUsK2EGTIwfvsxwYOMYDM51/71ythZNhormIaFZSZzAfFTGgXUfqVj3gv2U0T3wZL9tt/22+tw
shAPSG4EcJDiXVZSc7kc5XI5ldsUCoUBoESKWpFhiCxGiptSqZQW3TKRFfBBGAlSfNu2Ta/XSwEG
ifHV5Qfyc6/XGyjQxePEsqzUj0MKsvShq0k19JXp4cnz4CR61yNDYo1zuRy5XC4FEMRTQnxbBMiR
fhYmhGmaacTu1NQU4+PjjI2NpWapIsdxXXdAXiB+KKNSePTJtg4W6QCRMEJkZV73DRGGjB5BK9vQ
DWc9z6PdbhMEQdqnAvLI/vSYVylsu90uvV6PTqdDo9Gg2+2mxyDeLQKMCbAm/SxjS74syxow8hWw
R7+Wr1JkEgtomSYfPHIEK47ZtizsPg17QIbTn8RKUWX1x9/i4iKTk5Ppfeg4GTIZG88zWVxMYnq/
7dsUc3OKMNybfPO17ptR+5AVw4kJuHgxiTJ23WuzSnQpzszMDI1GgzAMmZubS58p+rUeBiR2E3l2
f5Z7YFSE8PX6RWevyJeYCG9tbTE9PU2r1aLb7abg5/z8/GtQiqMwjZi2G7LS6HFwLI8fhHsKkFgp
LAOutnpM5jIUnUSyMwzS7X4fs7bTgxgqeZsgFCPIBDBJrlvCTupEAb/9M39Mr9vFqWQIgmgP0DUq
Tcb3fVwiVDycrKF5r/Rvtc2my3bbwxghqRpl6PrcVpMd18ceNmk1DAzbBtfFNJIEoNNXm4RxjDUC
sNyzbUPx0sU6rZaHbZs3dd8Op+cYlkXoumxfuozbbifPECDYZ5Poj2Si/liwNVnUMINTXcPfJmeb
3HvrJEEYMTZdxPND4jBKI6YztsLE4Cn/AOWZOWIV0V27il2s4FRqRIGPYVoU5w4TRxGd1Sv0Nldx
yjWcUi0FAvdcX9/HLpahHyEszMSYGJOYZpzlTrXMvzb+khodOjgYRBhKsbzjMl/LYjkmQV8/lLUM
nri4xcGxHMWgxXHH5cp2lzfNlel0tqgpjxfPvMQXvmzwxtkJThUbrBgxF6+2yRSKFMtFYsMiBAIV
srzZZrJWTDzo5P6J4rTPiRWGFVAob9Hr1FjfuUI5P4Zl2rvnqTQfmX6f99w2y9uXWZg8immYrNWv
Escx1dIE7V4LQxlk7GwS8ftV/EyTf6dr84RRsH/j7IMl+22/7bfXWxMDUSlYBHAQwCSTyQz4kuTz
ebLZ7EBSjZh6ikGszgSQwltAFjFsFXBDpCECjkRRRKfTGSh8BJiR4kVnJehRwvKhphdQwwk2OlCj
M0lGmT7KyrWwLKS4L5VKaWJPHMeMj49z9OhRisVieu7CBGg0Guzs7KRGsPL+iYkJDhw4QKVSoVQq
US6XyWQyqdmtABLSXwISyPXSjVmHTV91Y1w552w2m4IMw4CKMGXkusu1lRVKkRK5rpsCHxL37DgO
tVqNcrmMaZopG0auhxS4ruvS6XRSs1thBOlGwLrhsM4q0kEnAfd0wEY3BX3VFgL9lUE7jvmr8XFQ
imKfVr2Hji807T5oYpgmR48e5fDhw+RyuX7MdI5y2cE0HR54wODRRw2OHVPMzX3tIoJfzuRy1zQZ
IObYMcWTTypOnTJGghDDXxKVLPdeEAScPXuWmZmZ1MdI9yG5FqNEnimj2o3Giy7Vk/vr4MGDXLp0
iWPHjnH58mVKpRLdbpcnn3wy8TB4NUvBvoKiMu6PqcubPWbL2ZFxmiItCKKIc/U2b5iqjFzl1b83
gPWGSxTHVPPOHuBa9h8EEZPTUxiGwnW9m+rjdB+xkTIIkltrEJhw/ZCNpkfXCzAMlRZp1wJKzD5Q
stx2cUwjNW6V8eK6LlcvX2B2/hAxMc8utWj3Qmzr5oCS85fqbNe7A0DJjcbpgFG3ZdFrtqhfuUzg
JjH1XcNOpB2hTxxHf+/PhVcnCNgfW2HE8maXmdkSSS0cjx7fQ/0dhRG2pXD6rNyLqy1una8koVEo
DCLaQYanOjWc2E+ieGcPJtcpirAyOZpXzuOUKtjFMsqyyNQmMGwHZSMauIQ1MsQIisNwAPSDGDOO
qJPjzeoCv2L8JRYRXRwsFSWME0Nx53yJnh8R9eOu/TCi2Qv5luPjbLQ8Ti+1OTlfplbOE0YRq02P
M2ttxvMWE5WIjLfKgW6XyRhOFBXPrlxg/bLJnbceoN0LeH69x8TMLE7Yo6ssArU7F+vzaVBxDLFB
tbZMfX0By3D6n4GDMk6UZnRsWHTcFpOVWWzTTuKBDZNKYQzTsKg3N8g6eTJONokcVmaajPOVLiim
smhNzrPf9sGS/bbf9tvrqOnsAynOdU8S/Xv5EnbHcIyuziiQ33uetyeRRpdwjEq8kfdIMo/4Wege
F5Leo0uI9BVjPYY2jcfTwJSBCbvmlTB6BTRhUIj8QaJvZbvFYpF8Ps/8/Hy6jVarxebmJhsbG2xv
bwNQLBZTKZMwSqS4kn8FTJBjFaZGHMcDAI30oy4XGi4A9WsrLA3xFBk2X9XlR8PpM7ovilxrAT90
ZpEwPPR+18ESOV49klj+1uv19kighn1lhs9LTwTSZTyv1pm5xAGXpR8FFJGKkIQBHitFoFQqz4mj
iOXlZU6dOkWlUiaXKzI+nqNed/jc52ze+U54xztkzCqGjSj/vmn3g/uJCUPFwkLEZz+raDQSKY6k
4lzrCxLz4Ha7nYJyuVyOtbW1VJIznHaje5fIs0j/V++P4Z+vdy76mNTNrh988MH0dYcOHRpZ/L52
CsvEo6Pthizt9Dg0nsMPBlPG5Lwtw6Du+ZzfaXO0WsAPB/t6rxlu3AcrQsaKDhkr8RwZTqAYjji/
3pjWwYM9BTK7viNbLZd62++n/hh7nvvXBkp6OALK90HNOAygPMHmH/5vHPn3v8ql/+svaNZuZXWn
S8axrwuUiBHmpas7rG10cF4pUGLb9HZ22Lp4iThKImI9M8M95z7KqfXneeiN78M2nRQw2W8QRjFt
1x/pG3W9sZU+S4gxTIOxUoaeF5LLWsQhGEbIE50pVvwcBSMgov+8N0z8dgO31yE/dYA4ioijiKDT
Jjc1C1GE4WToba8nCU3VcaIgSE1ch312FDFGHFEnzzvVM/y88QkiFB4WBhFRDLahuLDRIe+YjBcd
gijGMhUbLZ9WL8QPI+6cK/NXT68yW8lSyJh8/NkNmj2fO+fLvGGhAgqCCFpugKkUYRzR83wst8us
v8ELG23uH8uRNS7Ta0V0zTyesvGVRcss4KrEULZrZPEjCyPvYWQ7lONJTCtmfXsFw1CMl6fxQz/1
FzIMgzAKGC/PEBOnZq5jpUmCMCAIfSaqs0nMMIpWt4Hr95iozBCE/kg/q5f7WbYPkOyDJfttv+23
12mT4kKkFrpPiLAMdPNMkdLoUhfdH0NAFCmAhcXgOE7KGNFNEvWiSGJnhwEXPV1F2APCpNDlMXoh
o6de6D/rxY/OVJFzHkW31cGGJKbVTosxHSAqFArUajUKhQJxHNPpdNjZ2Um/4jhO+1ASgYQhI0CE
7k2iAxg600P6UqRO16II64WCZVmUSqX0ughwoe9neEzo0bzDpri6VEhkVDpjRfpW+l8AEx3MkfPS
r6H40QwXVTrApkcoC3NJNx3+SiZGX2MEIfkHiLTv90SYismtYeCEIZFStFst8ouLTE1NkcuVmJ3N
c/VqhocfdnjnO8FxFEEg44V/UKBExtCgf0KMZSWsl+eeM7j3XgPXVSMNlXXg0rIslpaWmJmZwTRN
Dh06NOBzNCyrGWaIXSs2WH7WQZDrTZZH+Rnp43HUfl5znxV9UMA0Fec3ukyVMmQsY4/MJgVMlOJi
o0POMpkr5lL/kmsBJqaCthvS9bpU8jbVvJ2CF9E1jKtHARvXa0af3h+EEZ1eQL3j4wUhhlJ9uU88
8r6J+h4lxgCjxEz7JD0PwyTudcm/8S0s/ZOfYkPVWF1vkLGtVO5zLZDDsgxWVlusrrWThJWRwOO1
gRLiGMOyaG9ssrO0lPxsGhCFxEDO7zLuNYjiaE9wy+t3oSiR4WRtk1vmKoRh1CdzqJt4797XeEGU
9msCesd0QosgNlAq4ZoknigRppNJU2yUUoS+TxQGGKYNxHS31pK5Uq6YACKmmcQ/K4UyLaLAT4FG
g4itKM+7jWf4BePj+BiEGJh941T6UsgLGx2OzxT7HzmKIIyZLGaYKCZgynrLJWMZmAasNz1umykA
cHgiz4vrbQqOSc4xObfWZnGyQBTFHKjlWBjL40Ux5VKeUBn4YYwJlMN230UlBl8RoYgw6JhZfCxC
SxEXKzzTvJccXWqlMWJUEh3MXlBRJDBpqpYWFxz2v4+IcewMlmkRa3HK+20fLNlv+22/7bdX1MRf
RAAN3T9AL85FsiEyHGFBSDSuLpsQzxHP87BtmyAIyOVy/YjT3ZQbea3E+ophp/iayPGIL4oeEyvv
Gf4g1I1bdZ+Q4eJNjwGVQntYxjHMOhHJijAmRDokIIHRTyyRor1UKlGr1eh0OjSbzYFiSgeiBETq
dDop8DBccOrRu3JtxLNDj9DV+2PY1FaOSYxxRSYl5yjAg74P2bYwN+R78WcIwzCV5HQ6HRzHodfr
pf4nsqIvYJCekKOn4AhbRz8313VTidZw6o/0u95HmUwmPY+v66JUKcw4ZsO2Od7r8Vy3S9WyuPfe
eymXaxw8WOHs2SyPPWbzfd+nqFbZk3gzXJT+/Rchw/dQciwnT8Z8/OMGb3yjGgDNhkESGSOu63LH
HXekMjDxKZJxOGzgei05zrVkODfqOW6YAAAgAElEQVQTHTwsw9Gfj8Mgwc0UuF+/haVKAQcviDi3
2ubO+RLhNcwUlVJYhsEL9TaWYTCdz1wXMAFSr4fttk+rF5DPWBSzFllbfy4zEjAZeW37iKQiYQ/0
/JC2G9DqBfh988jrs0kSoMZSCi+KeH6zyWbPwzEN2fEgywCI3C4TJ9/AmYVTrFxYxSRhhynN0HUU
o2Rjs8OlqzuYppGwyW5w746S3jTX1thZWk6MXAUcVAZO6PLY8Qd57Pi7yMbxV9XT4et7sagPmMQx
rh9iW4rkUXHzz00ZZ3EYsTBdIo6ixMRUKVQMz/dq/VhhBUozCLYcDNvpf2+hAp/i7AKh1+sDKQam
k8XM5vA7TeIwwi6WCF0Xb3OV3MQMcRhiGlCP8/yI8Xl+3PgsXmwSKgNTxQzfFgfH8+QzZnreYsKt
SCLmz6y0iIHLWz0ubnZ4263jvLjeIeeYvLDaxlCw1vR4y7Eaedsga5tEccxj5za5b7HGeN7qR4j3
GaSMMMiNY0phJ+njIGa68glKYZu/23gbthFg9I9bgCAxtx31XB31zI3jCMfKgGJgkWy/7YMl+22/
7bf99oqarPrrhe3wBFQKWomeFU8L3Xw1m83urihqSTSVSiVlP4iEJNWgan4csh8BY0YVKHrKyqiJ
o37sw+yCUdG4UkwNF0Q6UKRP5EVuItsTQEjAEon4DcOQ8fHxlD2Sz+fT2FdhdehRx8LOaDabqafH
qKhTncEjxoX6ucvEYNjQUpppmqnJa6fTScEeIJUxybnoMia57r7vp0k9cq2ERSIeM3pf68cr116A
FgFGJPlG+mk40Ue2J4a50t86yCdAX7FYTCUbX58T992CKxNFvJjLccjzuK3ZpXj3NzA1Oc2tt07x
uc9luXjR4Yd/GHI51U+8GQ1UvBqK6+S8DKJIMT6eHOvWlkGhoAhDY4/MRQdNTNOk3W7TaDQoFAoo
pajX66ysrHDXXXcN+PeM8h3S/zYKMLmZifQwkHMzbJTXapP70zYVSzs9ynmLw+N5vGAvCKL/+9xW
Ez+MmCtlCaI49UuIR8QPC8skjGJ2Oj7Nrk+mX5hlLJOMbWAaSkvk0e6h/v9ikgI4CCP8IKLnR/T8
EC9IJAmGGpTc6Mc+/L1tKOquz/NbLTp+mJi5jgJK+s9sxzI5e2mTl1ZbOI69B/jQpUfJ56VJvdHj
4pUEKFFfMVBipXG3+j5zcT/Gdd/gVRvPpH4z+nh6udGy8sYg6Ef3ojCJCWObz7cnsFXUZxPq4yVK
xmoc0bhwnjj0yU0ewGvWyU3MkimPEYUhcRQShwGRH6BQKENhZnIowDANtsIM/8R8nJ8wHqMVOZim
gaMgCPXrHOOHEfO1ZCEq7JutRnFMoxuw0/GZrmRZnChQzpoEERyZKvCXT63yrScmWNlxOTieY6ac
oeOF1Ao2L6632Wr7OKZBNWcTA10/pN7xma0k97l8nqm+ibksBgiIEvfxkG+YeBTLCHh8/Zv7RrQR
cWzwcofpbqx3lLJp9uOx98GSV1X7z+95y/7V3G/77euwQNOlOCKVGC7QR8V8SpGuRw8LCDJoWGfs
MSAVc05hmgjIogMXArqkD8v+Pkat5ureKcPHqIMi+rmFmmna9ej5AoBIoS4+HBJfLABDs9lMY3E7
nQ7j4+MUCoVUmiSshyAIUjaGnpoj4IusnOtJPjpwpMtQRIoi4MGwBEmf/IsxrvjQiHRGmDdy/UT+
ICa44rMifSav8X2farVKtVpNQR6R9+jFqX6dxXdCwDUdIBNJkoA2IuMSsET6RxgmuoeNgC16AtHX
0z04ULgrhYoiQsNgs5BnprPM+e3zLMyX+cxnimxuGvzwDycT78TIFZAp+givnX9o8Cc5pbhvqqmo
VCI2NxW1mqLb3csw0QEOII2tFjbU9PQ0zWYzNYQeJbsZBZSMAkxuJop1+NiMoSL79QiYQBKHe26t
QzlrMZa3ccMIoz9+ByJ2+/8+v92kG4YcqRSAOCnaUWlhPwqwELJUz4/oehEKH9NQmIbC6v/RsYx0
dT+IEoAkBvwgMbGMIimIE1aMbHN4nwMeFHGM2d/mpUaX841OGgF8vdQ0x0pW4F/c6OJk7IHieBTI
YVkGjabLi+e3k3hm4xUAJbZFc2WNneU+o0SN8M3pS4mE3bIfHfzVBxAVyfiK4piYGEuFvNCrcqFX
Iqv6kbYMM9AMosDHLhTJjk9DFGEXShDHRKEwJBVOqZr+Thnm/8/em4fJUZ5nv7+q6n2Zme6RNDPS
aIQ0I7QhJBDCwcgG+WAW2QaCgzcSDDHBJw4kRD6xccLyBcgxdj7LxuY4McEfmESYGOMQOwHbEIMw
uwwGBJKAkZBmJM1ombX36q6q80f3U/N2T88gCW1A3dfV1/R01/K+b71VXc9d93M/hJqSFFPDDGRM
/qq1h8vsJ0nbQQxDZzBdwHZgWkOAojWW+lXPR0nXNN7oz4AGbU0hRrImsVCMhqDNhp2jLJ8ZJRYw
KDoavqxJ1rSY1hDkzd0ZogEfv9s2QmtjkHktMYqWzaa+NO2JcDnxRtQr8pvGeFJT18qjki1FWZJ8
lrCRYV3/KmzA0GxsRy+n8YhEbD+vTe91lZ9Hlnjw4MHDEYQE4ZL+Uhto1KtRr/pGiNJEAmk1iJUg
XFJtREmieotomuZWyFHz/8X0VfUHUckR9QmvqqxQ26iSB/Vy3FVPDbnxlGXr7UuUJRKQC8Ehffb7
/a5RaSqVoqWlhYaGBtcUV6p7ZDIZUqkUmUzGJUuEOBHFiYyDkBuWZbmpQtIvleRR01PkuMr4Sh+E
DJEKRFICWLYnHjGizJDj1dDQwNSpU4lGo+64qqRPOp1203BE2SFtknGRlBtVnSSETDQadb1GhAgZ
HR1lYGDAVeHIWAtZJalQMkcikQiRSIRUKvWuI0pqlSCG45DTDabn8yw189xVuJbjUtN48ukIU6b4
+dSnbGxbk0IJ48pcHis3iNXt0tC08vmZTGoMDGjMn68B+oSeIGplp1deeYX29nbX42bevHmul1E9
JUmtX4m0p56MezKPm3pql2O64tIhmItiGknFbWDSZW2Hl3eMsnRmI01hH0XLrviCjFeYBAyDntEc
KbPE3KYY8YBB0XawHSWVYQKlie5GXeWn4bblYFZiyUyhWkk2FhxWAkJdq9v2iUgSHfDpGqNmibeG
swzkTXy6VkVk1K4n5NEbu9Ns3ZurpOlok/qsGIZOoWDxVs8Qtl3+/0CIEmwLwx8gtVslSsanQimT
eWx8vADykJ83JatMzgV8Bo4NjmHzUjZJ2vbR5DPL5q7jro82hj+Ib0pb2RwYB8dWCA7dwCrkyl5B
wRBoZT8Ru2iS9jfxl42PcwUvMeyEKHuXOJWy1xVGwgG/T8eqqLlqychC0eIDnQkCPp2iBZ0JHa3z
VPRln2b3LZ/jxFMX4Jx3M9Yj36Cl2E3OMXhzd5odQ3maYwFO70rSEPYRDfowSxbzWmM0hHzkSzaT
WYcJ91H+XSifc7lSlLmNrxH2Zfj1zoso2j78ehHbMSokn7NfhIkHjyzx4MGDh0Me0KiBsao0UQOe
2ptLeaqrVmexbRvTNF0TV4GUUhSDU9XMU/atEjWSVqF6ekgqT226jdys1KatqMRNrXGrmiIiihHx
u6hNAak3VipJkMvlqlQxUh1GfEESiQSRSIRoNOp6MJim6a4rxqfZbNZV9ci+xONFUmRUMkglgoS4
kFc9tYykuwhpIiRMLperUqKISkXGRFKuYrEYbW1tRCIRHMchk8m4ZYSF9Mlms4yOjlaZukoFHyFQ
RNUiXjhqqpJUAhKVCuCSSdI30zTd7avKlFgs5ip4jtVAtl4gVHXzChhAJhAgWSxxdmaYp2avYPOj
f83m7XDmGbu5/HIqqStjt53H8lPisevHWPumTHF49dWyMkY+ryVIaisiHXfccS5RaBgGw8PDpFIp
mpub3bmglgpWVWITVcWZiECZiFCu51nynr0xVTw5JiOadb0cJL7UM8LSjkaaIj6KJbsSsI0nTPyG
znChyO/3DjMzHqY9Fsava5RsxyVmJjIlHk9i7++JR/mpvkIg1FeVUPYmsWzeGs6yM53Hdhz8hj6e
qGDM+NWoBH0bd6XoHcoT8GkTEiVjKag6pmnxxtZBikX7wIkSTceOxEjv7GF0V1/Z84KjryirUi6o
c+c9LMJyHNB8GvuG8hRMi1nTG3Eq15h9pRBOpQIOml53rBzbAg3SfT2Ep7S6PiYycNndOwgmp+GL
xLDSw+RyOYzmdr6qP8ofGRsYskL4dPDpOqZlk4wFwHEoWuVqN7uG8zSGfa6/iLTZZ8DO4TzTG0Nk
NciYFs3RMKVtzxGb/2HO/eqd2P4Io68/Rd/rr9HUEGH91gH+YE6CZ7eUlVCnzUkwlC3/zkeDPmyH
MlEi6Tdv+/swRpgYOBRKYWZEtrOq/Sf8z67zSZcaCBp5bIxKWo1HmHhkiQcPHjwchWBGAmxJcVEV
HrVPqETBoaZiqDecxWKRdDrtBhSyHUktUdUOAjXlRMiU2hQYCXwkWJbPVeNPCYJUJYn6RFjts5iV
lkolCoVCVSlkCZBq043EJFWt0CP7lRQbSR+RErbFYpFYLEY2m3Wr/aipNrKOKCZU5UWtKa6MsRAI
6vqqIgXGjG5dybzfTyKRIJPJkE6n3apGKkEj60kfhKiR/7PZrFsNSAxei8WiS+YICSMBrYy12n61
Co7qk5LP592+CZEkZIyoS1RFkzpfRFUiCqmjFcjWK1M6ETFS9XnlZek6OZ+P43M5PpDJ8LuZc5g6
r5ELI/cxu+tk5syeUk4pcEDXHcqqDBQzvGM5oJBg0SGRgFyOiteKNs5LqPYF5WpZqVSKYDDonm9v
vfUWU6ZMmXA9NUCtl46zv4HlRG169wd541Nf5Ho9NDxCU2ND5RpoVCkpauezoeuUbMclTBIRH2ap
/By9XqqKr3JN3TqcZU/WpD0WYlokiE/XsJy3N2498B+5CmFSZ1uOpNtoUCjZ9OXy7EjnyRYtfLrm
trUeYWHbZe+WfMlm464Ue1IFgj5jHDGqvq8lSvKFEr4DJEocdPRiFv+GR0mVGtGDMXBs13vjWCBH
hRzQ5AKlv3cJE13XcEo2bclI+TpetMpzytHozjWUK9IoZqXjxqoyRpFpM8qVcRjzUbGtEoGGBIFY
I5RMbF8IX9jgeu0hPspGhq0wAUNjJGeyN2VyfEuMQuXcE2Pjkm1j2Q4Bn8aWPTl0DWY2h3EciId8
bNg5yrJZTWzfl2JKvJkXNr5Fe24Ni772ECNDA2jP/pAZTQH+bX0/C9ui9AzkuPSDMylaDkPZoqtk
6R3M0RAqGzKLJwr7dX2tlLvXQNdsClaIlvBOPj7zxzzW/3F252YQNPI4mu4SKx5h4pElHjx48HDE
ICSBmnohT3AldUJNdxFFgwTroqIoFAou2SBVcMTEs1gsks1m3fVlm7K8SoiEQqGqdB31ZlFUJvK/
mkKienjU3tiLwqT2pk7IAEmDEZWMkCCSGqS2T1QQ4XCYpqYm16dDSCJRlgjBIGkpMiai2lC9YXRd
d0sniwpFUpPUlBxRtEh7axUlquGpjI9KljQ1NeH3+0mlUuRyOZf4UNcT8qxQKLgB5tDQEI7jsHfv
XjdtRsigbDbrpseIwkSIH/WGUCrt1KY8yXpCmIgXjKhUxNtFzGxVQ2AhlMQXRiVmjkbg+XaBdO3T
crdEsGHgaBrJUokzhoaI6jrrOjqITmthz7ZePvaJbk49dSlbtgTL5ScrVTp0nXeVeZ2mgW1rRKNl
/5JcTlIk6hMRtcRHOBx25000GqWrq6sqfaxqbGu2V6sqUAm1ty03O4HB67vds2SivP7t27fzw/9z
Fzf9/f8im81TCKRpCCeqxq92PI2KOuSlnlFObI+TjPkplpmPukqOsspEI1uy2DyUZmc6z4xYiOZw
gGDFQNWuQ3DUu45PRixMeEw1Db0Sx6fMInuyJrtzBQqWjaFpBCptcCZoP4Df0BjKlnhtV4qsaRH0
VZcSrkeU+AydgmnxxtYBCgXrgIkSbAsnGsdY/yi3/c+3+cLSz7Ov7RT8xQzoxjFDwKFpYJk4dmnM
RfU9CtdUtEIQOBoYmsU+M8qGXJKwbjGmHax/DjqOgy5qVtXvRzcIJaaiWSYFfOg+HzeHHuVDzhsM
Ea34ekDYb9DSEMSyHXRNeRBmO8xqjlCyHHJFmxmJkHtu+SsLLpoe5zeb99HWFCKVzmAlO9E+/U9s
uP8fsWOtLLzy33jjn6/kM6e0sm2wwI7BcnWcrpYoBdOmaNskIoGxlNBJzs3JCZNKJTjdxrRCxPyj
nNd+P7/eeRG7sh0EjDyaR5h4ZIkHDx48HK2bZjHmFJJClZ7XSuIl+M/n82SzWUZGRkin067RqZAs
ol4Q5YOQMVI2V0gaCc4ltUcUA7Ksz+dzvQvkverdoZIC9UoH10rzx8o1+t2+yXYkiFLVKbIfqdoi
5WxF7SAESC6Xc/07LMtyVSKq4iEUCrmVZWQ8Q6FQlfdGKBQiEAi4Sgvpn+xLrQYjppfSXjVFQE03
MAyDWCyGruvE43FSqdS4tqglmoUMsyyLbDZLX18fuVyOUqk0zqRViCQpGVxrCCzlhdXyzKI8kUBX
qgGpZZDlr5pOJW10HIdIJEIsFiMej7veNkfryf/+qg70yi2eresUdB0f0JXP05nLEdI0ehoaeKG5
mSnRKIlImGRHB3PmnMLwsIHPV8lFV0wxj67kvuZG16l+kFj9XqvMrXKJSsOAfF4jHB7/8LGW5JBU
ru3bt9PU1OSmz7W0tLjzdCJ1SS1ZUqsq2d/SwbUVet4LChP12vjss8+yc+dOpk6dyqZNm8jncpj5
LLlsjq1vbaN1RRLLnrhEsBAmlu3wYs8Ix7dE6WgOu14Jeh2DUwBD0zA0jUyxTJqERw2aw36aQwEa
An78RiWlBWe/yJN6n4sfil55um87kC1aDBVMBnImo2aJUkVh4pdr5yRqEqNiqLx1b5at+7KA5hq/
qn4g48xcDZ1srsSW7UMUCtYBp96UzVwDFPbtZo+d4AtLL2Mk2YnPKuBo+jEWOmpgZqCUf18FtZoG
lqPh02w25prYVwzS4CtiodUdhckqMbmiHMskh58IRW7Qf8npzlYGieJjLH3WZ+gEKt4ktURdoZIW
E/DpmEUbv09nb6pAzrSY2xLFLDk0xwI0hPzsG82SCXaQ/92/k/nt3fjDUaykzp5SlDkNo2wdcPhg
VxJNA0ODN/dkaG0MouvQ1lghYuyD+11yf0fQ0HWbkh1A1yxWtf+E3/R9nO7RhYR9WfAIE48s8eDB
g4ejccMsQUdtXr4QFvXUIGLEOTg4SCqVYnh42CVchCwJBoPjKkpIlZvayieSYiNpMhKUh8Nht3Sx
EC3BYLAuqVFr8lpPaSJKByFkJGAvlUruPtQAS94LiaMqGdQyvqrKRCWOVCJDyB55Ii6pKzJmqgFu
Pp+vUseoKTeq0ap7I634ddSmGciYAsTjccLhcFVFHjVtSdaX/pimycjICHv27HH9aMQQWLYpf8Ws
VdKHVKWKWg1IFC2yL1GUSCqSeJuoJYdVQgdwvUrEHPZomW9OFnhrlQDK1jQsTcPUNBxdJ25ZzMtk
mFUokPf7ebOpiX2xGP5gkCmBAI2xGI2JBIlEgnA4UCmjqI1L9TmahImmjZEmYjZbS5iMHyMqRKVD
LqcRi2n7RXRomkYul6OpqcklTvv6+hgdHaWjo4NcLjdhOs/Ewcj+kSUqeaySJe+FajjS91NOOYVl
y5YBMGPGDPyB36JpEAjHSGvN9OwcYUZbHMtyJiVMyiaosLk/w0iuxPEtUYK+cprORMcBKFe4QcO0
bXak8+xKFwj7dBoCPhqCfqJ+g5BhEDDKqWdCDTj1w3T3O8dxKDkOBcsiW7RJmUVGzRLpokXRttHQ
8OkagcoT8XrKFSlDrAEBn8ZorsTruzMMpov4DG1c1Zl6JIffbzA0kmfrtmoz1/25rqjlgXMjIwxt
7wFfmIHpyzBKBTTHPmYMW8fScGyIJNECdvn9ezgNp/ocqBw7zeHJdEvZ1LVSOn2ydavfOxX/GQ1D
s8g6AaaQ4Rbjv1lEH8NE8Gs2Y744FZ82R503Y+8NTaNQsnhzd455rTFsxyHs1/EbOrtHTeIhg+XH
NTKQLvLqoMZLL64j1/0MO7J+Vp0Q5nc//gZLOqaxvjfH4hkx1r0xQOfUKImIn2TUz9RYgL0pk4aQ
7x3/Lo0R72XCxHZ0cOAjbb8goJu8NnwSYSNb5XVSfdZ78MgSDx48eDgMUFNPJMBX1SSyTJVktOZp
qxh8ZrNZAFclIUGvqjgRXwwJ+iWtRExgZb9SEraxsdGtxKKWtpV2q6kyaqlg1RRVld0LESD+KLWB
ttrX2lKh0u5gMOiqQMLhsLtN1YRUfYot26pNbaodaxmPXC7ntsOyrKpqMEIySGqSpNGoBJEQW6qa
xrZtt73RaJRsNuuqf8QzRFKPRNFSKBRIp9Ps3r2bnTt3Mjo66vo+SKqVECNCcAnZIeoR1WdEUokc
x3HTt9Tjpus6sViMpqYmEomEqwgSUkk14JX9i/fJ0UrDkSfXbkUPTcNWCBIH8DsOTcUiLabJtGKR
uG0zFAyyfupURkIhgrpOg2EQ9PsJRSI0JRLs2bOHYrFM6pkmFZm3vMYbRx55onXsBjeXA9OExsbq
z+sFgADBoEYu56DrTuWmVxtHQNQG4nPnznXT3MrbCLJv3z46OjrqkiS1Fb3qVfXaH3KttqTxe8W7
RG2/et50dnbS2dkJQLFYxNBsdu/JYFkOHe0N4wgTdezVFJu+4QLD2SJzW6K0NAQrAZ1T5WVSS5ro
UvkGyFs22WyB/myh/GRc1wn6dIKGTsjQ0dCIBozKM/uxoClbsijZdkVBUqJoO+QtyzWR1Smn4PjV
34R6JIkzRpL4DY1iyebN3Tl6B3OUbAe/TzF+rUz4en3y+XT2DWTZvmMEx6GKKJloDk1ElAxu76mU
n3XwFcuqFkfTqlJ/jvbDF/fkty0cIXLeJ1W2HWeM7MhYvnLJdMb7lUyyBXC0cioPFhknyDRSfNP4
OZ3sY5gwfs0ue3xUXSMrJLRRJibHrFDKc97QddoaQ1i2g1myiQTLviJ9w3k27Bgl6NM5Y14zw7ki
89qTlGx4uaefBa0R/L4IPcNFklEfhq5z6uwEmYJF1rSYPSVCOl9ib8okEfFTssfO73dCwruEiebg
ODqWAx9u/SVhX5rfD3wQv2665ejLhImnMvHIEg8ePHg4zDc3km6RSCTcG1812K2VdorRaUNDg2vK
Kekp4lshPhriDSJKA5WEUKvBqGVA1eBfXrWBv6hBRJlQj6CQIF1NwxFVjEo21AZAamUceUmgL8SI
2kchhNTKQPK/ul1Jt1G9RdSAzLZtl3QSg9N0Ou1Wn1E9W1TSQIgcN5++ospQx0wq3ITDYdcQVSoa
iSeIEA6O47iqEimTrJraCkEjahdRiqhqF1Ho1FZLyufz5HI515NEtilqFdu2q1RFsh11vNR0n6pg
6ygpS8qPu3UwDHyOQ9CyiFgWTaUSiWKRmGXhaBrDfj89sRj7wmEKfj9hoEnT0H0+/IEAoYpnjRgQ
n3rqqYBGMAiFgoPm3ihrdYPUo0GWOA6sXAmbN5dfLS0TK0zKbXYqN7pKgMD4p5Hq/7quMzo6imma
hEIhCoUC0WiUhQsXVlWAqldtaCJ1yYGMl8w1dY6925Ul9QJ7uT7aTrkiTnmMNHw+nf69acBhVnsT
JcuuW0a3qlSwT8csObyyI8W0eIE5UyM0hHw44AZVSKUQ6pcL1pVjZNo2hYKNg1I5p3646X6nScUl
ysayE/W/miSpLiFsO2Xzyp6BPOmChd/QXK+R8e0u79m2HXS9/N2u/jQ7+0YxDL2q/PBkx2VSosTd
hj42BseasqTSJrefKp/1XkalqkuuFGRLIU4AB0fjwIkSxyJNkFkM8g3jF7Qxwigh/KhESfU81rVy
5Ztk1F/lheM4ZR+TZNTP3pTJYMZkwfQ46XyJWc1hWhqCBHw6P3+pn1OOa8Kva3RNDbNkRhezpkQw
1GsyDrGgj/6RArGgD7NUJg0XtMUwK+k+h2YejREmWoUwMe0AfzD1ccK+LM/s+Qg+SpXfQ11RmHjw
yBIPHjx4OAyQgFfMQ9WUmXqyZPlOAttCoUAsFqNYLLrpHbUkiaSZqASIGuCKOkFIBrW8ragf1NQO
VZ0iAbpKpNSmqdTejKpqEXmqWpvmoAZFqleL7NuyLFehImkoQgioFXxqU2FEhSEqDjXtx7Is1yg2
k8m4Zqe5XK7Km0SgkjGi8JF0qtq0nHw+76b8iH+ItNEwDJdsUcklIb4kbSgej2MYhmtQK6k4UpFG
iBtRfaj7l+2r5aeFhJI2S/vEl0KILBl/aa9avUgUUUcreC1pGsdnsyQHB3H8fjTHwamk3KR8Pvoj
EQYDAdI+H7au49c0QpWXZhgYlfNDVD+hUEghAorYtsG0aRa//73FwICPpia7IlOuLoN7pAkTbSzO
JZGAZBIMY+Igqjx3x8qqqqTPRObMquIqEom4fZbPQ6FQFcmqrlNvLOoZyL4dVP8m9Zx718d1dUgC
l5S0nXHBmN/Q2b03Q8ly6GhvLHuUWE7FpHd8WWGHsoGvjsbelMlApkhLQ4CORJiGcJk0sWwHW2Lp
CXxC3N8dYT0O+gmy41aOmqjijlPxVzH0cnWcPSMmO4byDGWLGJpG0KcYv1ZOgnpliA1Dw7Jstu8Y
ZmAoh79OlZz9Ikr8fnLDwxWiBIUo8Z6iH3vkY1lT4tMt3someKsQJ6BbOBP4lYyfm1qZbHEc0gTp
0vbxj/p/kiBLhiA+za6UIZ6YG8uX7CpOSp1P+ZJNU8TP5r40hp6mc1oUgJFcieFskQ/NLStLls9u
wrYdZiTC5ItWWV2laZglm4G0yfSmEF3TohUFS1nRIb4oh1LpOHb9qahHHI1sKcqJTc8TMTL8pu/j
6NjoQpjgvMPrgwePLPHgwfY9HC4AACAASURBVIOHOjdmEkRLBZNcLucSFSqhIEGpqvyQoDsYDBIK
hVyjTfHzAFxSQCVDZJuiyFBNYIVkEUJGCBN5qdVVRPkgba99iWJBlhfUIzBqb1Jrl5OgXarEiCJF
CAhJ6alVu0iKiQRbMmZCsIhviexD1Cu5XM4lS1QVixwTUWuoCiAJ4sQTRBQiQoil0+mqtB815UrI
EglE1bQmIZSamprcgFXIGzk+8XicaDTqeskIoaEGJjJektoTCATcCjqqKWwsFiMajY5T6ajvVWNe
SXsSwupIBxKG47A1FuO1yrwoAUVdx64YeRiOgx+IVG7jdF1H03WMSkqWzAchBGWME4kEjY2N5RKl
fofFi02eeCLIH/6hQ6mEWxlH7fPRIEw0DR5+GEol8PlwK/XUCwLLTwkdSiWNQMBxU4smSueoveF/
7bXXmD9/PlBOw3n55ZdJJpMkEgn33FTHROZzve0diGdJPTLmveBZUo88GRsrdW6VyQ+fz2DfQBbT
tJjd0UQwaFAq2XXLNavb8hk6OA67hgvsGTWZFg/QngzTEPJh6GA5uNVE6pEYE5EKB/K940y8XU3T
MCqLZ0yLvSmTncN5MgULXSsbuMJYuo7av1qyyefTGU0V6NkxQi5fOiiiBBx0n4/MwAAjO3dViBLd
I0qO6fOnHNg7msWz6SnkbR9hXx6bt6tSNJZOouMw6gRZrO3iG/oviGCSJVAmSmoUJbXnre04dE6N
ULScuuXkRdxz4sw4oDGaKzKSLRH0l+dVrmiRL9rMag6TylcePjFW2l7tp1myx6rfCHFYh4Q9lONa
Hh/IW1E6Gzbh100e2XUhlm3g00vYjlGuMOcZv3pkiYcxFNKDpANJmgNHbzuHqg3vxnF7N4+Bh7Ef
NSljK0GxKExUFYf6ZF+MUVVJugS4Pp/PDfRFvaGqKEQJoKoGVAWIBOfi66FpmkvEiOJAlhciQtJ4
VEWJaoAqZquimBGIQkOUL6o5rPS11tOgHhEj6SfFYtElB1TjUiFp5Im4GL/Wpg2p25RUFUm/kWVt
265Swch7SaeR1Jh8Pu+a4gpEBSNGq6oRrmoiq1awUVMghAiJx+NYluWWH/b5fK53i5Q8lnFQ2yUq
lUAg4Bq5iqpGxkTmkuoHEwqF3PlQ++RarQ4kJNHRCGJFSWIbBrZhoAPhSnkYefqsaRqa4okj54ac
H1I5KRgMEo1G2bp1K729vcyYMQNd10ilYOHCEt3dNn19Bq2tDrZN1VN9NWg7EgFVrcGrECX1jF6l
tKakKhQKDpGIU/G/qA4Ya6tWqYHkokWL3PNTrg/5fH6cx5I6DnVNOw8gHUf1Z1JJ1PdX0FquSEPF
rDSdMdn05j5mtTeSbApXpeUI+aWOkepl4jiwa6TA7lGTxoiPafEAyWiAaNBA18plTWsr30x0DA+2
dLCYDUuFHLNoM5gr0T9aYCBdxCzZGPoYSeK8DUlSNm0tP/Xf1Z9iV38KtHL60v48ba9qs1MmSkb7
+xnt60f3+Tyi5F3x8KlSDt42+H2meYzgmDR4HyNKNMchRZCl+k7+X/2/CGNSwI+PiYmS2rlYKNlV
nkD1yPRIwIeua2QLJXyGRktDkJaGIEXLJhkNkDUttu7NsDdlMntKBKuSlhb06XQ0h8vpNnr9suOH
a37WGroWSmE6ols4d8YDPLrrfAp2mIBeKBNTDl6lnPcg9Pdrx/s2ruNbt1zPn1x8MWecdQGfvvwq
vvXjdQyY+xGgm73cdPW1PNkzWPf7ge6H+PTFf/2Ot3Mg68o+30ybR3wsJ+uv+t076e/+bO9ojoGH
gyNLxDBRFCaqp4QQKRLsqqoSVbVgGAbRaJREIkFzczNTp04lmUy6VVck8FUVFaLGkIBYyvLG43H3
b0NDAw0NDcTj8Sr/DZUskbYJ4aIau0pKihBAtX4I6rK1wVO9yiMquSOmtFI+WXw9hBxRK+DI/yrp
JG1KpVKMjo6SSqVIpVKMjIwwMjLC6Oio610i/iVqyoUEiqJOEUJKxlSMV1WfFjmuQlaopI2q2FHb
KcF9NBqlqanJLZ0sx1XUQjIOohSR6kCyT3VuyT59Pp+rSpGXHO9oNOqm9UiFoNpXqVRyvVxUFcyR
JkscOS9UnwVdRzMMN83GUNLRatVF6ktS2+LxOB/4wAcUdZeN49jMnVvk1VcdwHbJhwMNFA9lcKCS
I6qHSf3rTTllw7IcikUIhx0sa3wKTj2SxC2DWSiQzWYxDINCocCsWbNobW2tUo7VnseTvfZnvqjX
PVXVNBG5o/7/3qJLxuaYYehYlsOWbUNs2zHipp6U+1+dVuMGbc4YWeav+HcMZUts7s+wftswL24f
ZftAjtFcCdt28FXICp+hoevV5JRdZ8ztykv9Xo6frmv4jPL2pMxvtmCxcyjHhh0p1m8b4aXeUfpG
CtiOQ8A35i8yLr1IUd7YlXQln08jnTF5fcsAO/pG0XUNQ9f2y8i19pzVfT5G+/oZ7d+NoVSNq52v
h3t+TURaepj4WqhrDpqjM2IFMVxzV/aLKBklxNnaZr5j/IwgJUx8GJpdNvBlMg8oxWutTrn02nlm
O1CybEJ+g9bGEPmSTb5U9ikyLRufoTElFmQkV6wiRWzHqShKtKMyJ1TCRNNs8laY6ZHtXNDxb0wJ
7qZghdCxyuSU834xyXn/4H2pLHnzqR9wzY2PsvSiS7j261fSGgvQs+UZ7vjO7dw0FOCbXzqN4GQb
ME3SkwTksdZlXPuVOW/fkLfZzmFb9xBjsv5WfXcI2nyot+fhaP7AjykopJJLJBKp+vET808J9oUc
8fl8LhmhpltI0CepI0BV6of8yNamUqi+HWpQKdsTokBNb1FVJaqKRNqvtlv9XP0r60gb1UoyosAQ
pYgoY9Rtqy+gytRV9QSpF6DVkj5SgUYlF9TqN+p2xBdExk88P4TsEEVGbRqOECyi9BE1i0DSliQ4
lBLQfr/fVQ8VCgVX7aFWM8rlcu7xUtso7ZOxFBWNSsZIqpb8FWWTvIR0ElJE9is+OZKipZZBPpJ3
yuqcqResq9+LekfmuUqW+Hw+4vE4zc3N7viJLD+btWhvL7FuXaCSzlLO1VZvjCd7Gn84A4XJPh87
30DXHUZHy4FCOOyQTtuVfkxOmMhfmRuiJpK5ZChmKfJ5bUBRb2wmC2Llb63Zs1o6eLJ0jHd99Ic2
oZeMlAkG2L03TSqVp316I02NwQqJR5Wfx0TzslxQpjy+gxmTgYyJT9cI+XXiIR/xoI9YyCDsNypk
xxgxWV0BY/x7WyFQCqZNvliu4JEuWIzmSuSKFsVKvVVDK5MpYjhrO5OnBKkpN2bRor8vxZ69GYBK
2o2z3+eiBjhlmRg4DoPbe8gODaEbsp0x8kn1SdEO8zmuUcfcfT/2KYSZkGPOsT/N6153DnhbgKFZ
bCs00GtGCWiWS4hMFLhrlImSESfEH+qv8Df6b8g5fhw0dBy3us5k19mDIcCE/LAtRyFBwe/T6RvO
o2nwB3MSpAulcaat9eb1kbzmya50zaZghYj7Rziv/Sf8aucn2Z2bQcDI46BXhs05jO0YTyZ68MiS
Q4aC2cvd33+UhV/4Kv/w2VPcz5tbL+SWlgT3Pp7GBIKU1SdrbruL57fsITlzMVdes5rzlrRw9403
89LQHl66+mrSt67hkiUtVftI97/Ard98hH+//9sMdD/ENTeu49QlAZ5cv5m0GWXFpVex+pOn1N3O
9vUPseb7a3mpd4jkzHl87ktXcfHyznH9qF333ChgZvj5nbfy5K+eJR2YxrlXrOaqT5w4aV/GkzCD
3P/9b3P3r14gTZSFy89i9VcuJ9n/KNfc+AhdnbBxyxCBWAvnX3oVF58+s25/u2YO8eTLGT519Sd4
9K7n+Pf7v/224/b1yy8hcMWtfPn0maT6n+GKP76VU//+9vL/Peu45ssP8YWvnc5t33ys7vbebgw8
HHtQFSWmaTIyMuIG7WoVkmKxSDAYdBUT6pNWCb6FRBC1g1oKWLYjPy4qyVIsFquCHUlNkIBSCAFJ
MVEVIxJ01wbh7tNG264rXxbioVAouP+PBabVpYZRbhrVFBa1EoxqOilBce021B9WlWSRsVfL9coT
dNWMVu2DEAxybITAUMmH2hQiUQnJchIECmEkahPVbFWILCk3rKbMiBJF2iwBrPoSwkb1QlFJMfHH
EXWMvIREkGXUY6CSeyrhJATUEU/DqfRF2qt+rtek3qgpOKrnj6SbxWIxUqkUra2txONxhVzRKZU0
pk0rp7t0d+t0dWnYtj6hJPpYQfWTTofhYY143CIY1Mhk9CrFhkomyUtNP9N1nW3bttHR0YHP52Pf
vn309fWxePFistmsO3/V9LZaBZl6DsqxmKzNQkrKX2mnEIeq71A2myUSiRyzx+IADtrYdUbOQc2u
64Pg84FlOWzrHSGZCtPWGicU0MseJJrB/pb19ONyFZi2w960xd50qWK4qhHwlb1Pwn6dgDFmtBoJ
GgR9BsViiYxZLlWrUTZozZfKCqx80VYMKctP4A3Dh8+oDnb3F4auYdk2AwMZ+vZkMIs2gYC/yvR4
v8iISvSnGQZWscjwzp2Yo6MEQ8GqBjlVy9tomnHYi6WO7bOSUrif+3QcB0PXKFpl9eCx/Ixf08BW
HgDpPh+OfZApdo6GZthsTE1l1ImQ8BWwxjl+VBMlDjDihPm8vp6/0H9L1glXSlsffpJJV4yYZT7a
jkN7c9m89cXeFCe0x3Hs8bXgtbGZcdQDaNsJEzQsLjjupzy663zeSs0j5MtyuBM3RCXnoONzDDx4
ZMkhRbr7BTYOJrh25fxx3zV3ncHVXeX3qcFXuOnGO2g95zLu+/qJbHxsLbffcDPJH9zKZX9/PRsv
v5mPfH0NF3Ql336fuzfQP/N67rzmZtLdD3LN1+7g+dPnj9tOqucZbrplLV2fuZL7zplP92M/Yc0t
NxP71hrOq9lP7boD3WBmdrDRXMV31l7F4Pr7uek7t7Ni+RoWBrZO2JcPtMaqtrt9/VruXe/nO/c/
SKvZyx033swdv1jGtcshvft10iu/yp03nUF64yNcd+M3SM68laV1+pte+VXuuWY+xaEXeHSCNtfi
1CXTuPepzRROn0n/pmcYpMjGp7ZSOH0mPZuewexcRnuD76DGoLafHo6NIEYCbSEbRkdHXaWBmHUC
5HK5qv8lKBWCQZQZEvT7/f6qtJTa0pSAS7CoAbFKXEjgpPqcqIqOep4nEqQLASD9U5UxasCjKhHU
IKhWDSKBlqqQEdJGbY+YnqomqirJUpuaI4oMtdyykCUqMaEqcdTqQUKkqH4vah+qfmwqn9Urnaz6
zEjlm1Ao5D5FFy+STCZTVd5XxkA8UWqVKbXBp/RfJXOELPD7/W7qjRAPMlZqipXMx9p5IX+PnKJi
TBo/NDTkElbS39r0jVqvEumn9F/m4uuvv87o6Cjz5s1zvVrG5n6Bk0/O8otfhLn4Yo14XC/futYo
l46lYF3GqVSy8flsXn0VQqEiQ0Mmw8NFisWCq05S/6ov9dzIZrMMDAzgOA7pdJpcLsfAwIA7h+uZ
Paufq+l8hmEwNDRU5Vek/i2VSoyMjLjpZUKM5fN5RkZGePTRRwmFQlxwwQU8//zzvPLKK5x77rkc
d9xx7vx8t8FVBqAxOppi70CQkln2JZlwTlUi4t17B+nuCdKgj9DS2kS4aQqOZVURevtDI9QWtZA2
OWr7XM8cG90IkOp7i2A8iRGKAuWAfSw9gQkMXw/8WmHbDoPDOfbsyzHU2014SjuGz1dJydEO6two
5vPktvdAIV8x/xm3YCWytyC9B+JtTFoW5dBMBNB0KOUhNwzxVnDst99nOR8FCg6D+tBYQH6Mea6I
Yk/TIJ0aZXhwH75wEce2DuI4lkkXv1Hi59v9DA4PUPIVsScM2Mv7Ljo+Ltd/zZ/oz7LLCYJWDvGd
w3lMK78Nr+1KMa81hk/SxdQ+OzArojE8sG/cmAV9Om/uzhANGrQ2hSiW7KN+XB1HQ9cslod+SHbk
PN7cuwifXjyshIlLlpR0hrSR8WmHHjyy5B2RJZndmIEoyZiYD6ZZ++WruOPlPZXHC9O49gdr6Nj0
EP3JP+CWSz9KcwDaPnkZG399NT9fv4OlK/0HtM9AdA7nn7OMeAACHYvpCDxIz2CGU2vi9+71j5Du
OIurPnsGcaDtk1+kf/2V/PLxrePIkrr78bdz2aVnMSsZo/X0VXTd8wzdgxlivRP35QOfqCaNArEY
5uAL/PxX6zj/9NP48vfuBsp+IIHEPC77zGnEgfjCMzi3cy0///Vmlp5Z+4imnT+6aBltyRgD6f0f
p4UrTyT9nQ0MmqfR/VQvXWcuI73lFQbNZWx8bCtdKy8kytaDGgOPLDk2IYaiarUVudCHQqEqBUYu
l6syDpVgQJ6Oy3vV1FVNI5F11GBaiAgJJNUUHfneNE03ZUQIkVqSQq18I/2SNB0pZawG7qKKkM9r
nxgLiaDKz1XTV9VgVFWIyDbVkr4SKNcG8WoKixA7cjxU7xAJ0FRFgihvhHSSYyTfq0SD9E/IDyE1
5BjLZ9JulTgKBAKuP4maglBbUUiWl+Otereo6UCqqamUG5bqN6JeUckmtVyzSlrJZ6FQqIp4EjXT
kSIbZfwvvvhitxpL7fcqeVJLpNQSapqm0dLS4s6zbDZLPp9ncHAQw9ABg3BYo6lJ5/HHNRobQc04
OdRkSa1nwzsllXQdBgchFLJZt04MXp1J1R9qG4LBIF1dXS4p1tHRQUdHB7Zt09jYOGnax0T+LrNn
zyYWi1WNmfydNm0aGzZs4De/+U2VOiqZTLJnzx6mT59OKpUik8nQ39/P8uXL2bhx47uaLNG0cgoA
wMc+MJfZ0wcJ+M0qwnny452lZNoEg6Mkm33u9ewdt6uGQKkN6q2wTTiax+d3yOWyY8fbOXTBp6ZB
sWiT9RXxtRhEl80iZ1rYtnmQ50Zlm7kC9olTK78tkwQMPoOgr5NC0aZkldDKBVMPVzhYme8WkdDx
mCUHa7/2Kb+XDtMaZ4Pmd9OHjrV5Xi45C8m5H2TdwHSMfADHsd/RHJ3X2EB73MbAmHCcNMBGJ0CJ
BdpMnuC4ih/HYSYVKi3S0LCmOvxep3I8xxc4rltRqrKclSwTBdu1+useBbqkQpjYRFo0pucLFcrJ
Opy7rKTElWiPdBIwgsfUQwqPLHmXIxBtIWC+QH/aZG4sAMQ4/+++wUdMSA++wk1fXgsmDPYOMbjl
CS5a9XDV+kt7h4BpB7hTPy43EwgQCADF8YsN9g4RazmNsRoSAZKtCdL9Q/u3n5hCAgUgAKSLb9eX
arQtuYRbroly9313c8U/fZvYzMVc9TerOTUAsViCmFLhIpaMkR7MjO9uLEEycODlaZKdp9Fq3s5L
PTt4qRfO/dIqfvPNtWzs2czzvQHOXdAO5taDGgMPxx7kZrJQKJBKpVyyQwLiTCbjkhiZTAa/3082
my2XR60E87K8KANEzuo4jksC1At61B+VWvM6UT+oHimq+kNICpV0EJJCVXioZXxr91erRFEDTTV9
RNJ/hDyp3Z7sW1JQ5Em46l+hVvdRtyltkPXlr2qoW6tIEJJETW2S/yXFRpZRAzW1yo2QSvKZbCuT
ybhqITmOQmqIX0koFHJTZaLRqJs6oqZyqUoPdSzVFAshYYQkEeJEVBbSTtW3RR0z2bZatUcIpyN5
sy2E0+rVq70LynsAasUbgBkzZnDppZfWXTaVSvHyyy8TjUbZu3cvbW1t/O53v+O8886r2sa7kSyR
uX3JxRe+o2291f0G09vaCEbjR6Tt/Tt6GB4eZv4JJx6R/b30wvMsPflk0I7Mrbxl5ti4aROLlyzl
SNaH2LblDY6bPRt0/wGv64qAjkGyROb5qgs+5V38PBzS+wIPHlnyjpDsWMbC2Fp+/l+bOfWKUwgC
8WQLcSAVSCAxfrIlSuuCi7nze5cjP7Opwd0QS4DZe+Akzf60bWaM9OM7XM8USNPfO0SsM/aO9jNp
X2pvwPp7iS04i9vu+hSF9G5+/v2bueO2n3Dq33SSTg8xmDaZlQwAJj29aZIfjAKZQ3JsgrE5rJhp
8ptfP0KaFj7XOY/+pMkv/+sh+mPzWNoag55DM9Yejo2LumVZjI6Okslk3DKcEsxKBRk1sJbAPxwO
V/lyiPJBDdRVY1bVS6JeuoCq8pBgWIgNIUDUKihqeV7Vw0JVe6j7UPevqhxUfxFRVkibhSBRiQkh
WtQxlABd7Y+ajiFpM7IPlaxSSx2ryhjZnxAX6jaEOKktH6xWjlHJGTVwU5UXarqSvE+n0/h8PmKx
WJWSRUra2rZNNBolHo9TLBYZHR11FR2i7pFtytipniuiLNF13a3YI6azqqmrKCpq1UPqdmUuqBV/
1DSLI0E2qgTY4bqxql8e9XAr8B2XMH3qqadYunQpra2tVefDwW97/9t+pI6lml43UfWR2nbF43E+
/elPuyRkV1cXJ598spuu+G4lS9Trg2XZ++VMIMc0l8sxsG8A3Shfu75/xw/54z++hEWLTjgMSpty
GJ5KjTI6Ooqu68RijTz9yP+QK9osPvFEbNtC1w+tn4BllQ2FH330f8hmMvTs2sOqVedhWXZF/XWQ
XZn06/I8NIsOfbsH2PzT/+APL7ywSg14qGHbNpqusWfPHm67/Z/5i7/4iwNSTFUevOPT9XJFl2My
DafcSMe2xtxe35EbTFlncSBXLd2r2nLoj+1RULrU/oZ48MiSdxiQz+TKa1bxpRtv5iv9qzj/nNPo
SATo2fIKv7zvfnoCc2hNBuhYvorYnd/m9gfmcNk5y0hvepTrbljLipvWcOWSALFAke7ePaQ6ksQP
NjoPVG+na/lZBO65o7zPlYvpfmwtP91Y5LIvzHvbdSfDZH25evnMqmV71t/PV+4Z4tqvr+bUrijJ
WJRArGzEag69zh13Psi1V5xBz2M/4Tf9Ma5aOb+cw3oQ/R0/bgEWrpzDHf/4MB1n/jWtsSRLlyS4
975nWfqZm2gOwMBBjoGHY5MsERNRMTqVFI5QKOR6WahBr1rJRcrGGoaBaZpV6ROyHbkpUb06ao0+
hewQZYh4dagKEdWotNavRNQMQFV1F1lPTYkRiGeGKClkW6KCUFUuatUWCYxECaKSHbWqEFHECJGh
mp2qxq2q2aT6ZFs1DVXTlNQ+yZiqfiW1aU7yvVomGKjydZHxy+Vy7v7k+Lo/VkqpX/HXyGazVWlc
qtmukEhq+oyMg+zDNdZTPGKkPULCiC9KPp+vUh6VSiXC4bDbB1GkHA1n+sMVsEx87h6Z68P27dtd
Qmznzp1Mnz79Hd8MHsiqx8JNZ702qNcO9X8p1/1euWkue43sT+pNhVxLp9m0aSPhcLhsuKtB365d
nLh4MRraAXqX7A9BozE4MMAbb7zhlh+3SiXmzTseXQPDdxhusR0dQ9fRcAiHQ+VqTHo5neNwEWRy
TRvJDvPGG69z4YUXYlTKLx+uOVaugK7z8ksvYRg6/f19dHbOcT8/IB7oGPZzKKte9EPmluuFycfI
MfXgkSXvdsw6/XLu/Of5/PRnj3Dvd75B9+4hkjPncOrpl3PPpWfRFggAp3DDTZex5jt38Zl/+gaB
6DTOveKrXLl8JkFMVixvZ80/fBXz79bwtZWdB0fcBFpqtnMGt1yXYc337+Az/5SmtXM+n7vuJi5Y
mHzbda+cOfF+4q0T96UWi865kiu3fJtbr76cdNFP15IzuPZvVkH6CQLRdlrTz/ClS9YS65jPZddd
z4daYwx0H2x/x49bx5IzSPIEHcvnEAQ6li8jdt9WVnxwzjsaAw/HJlmSyWTcwFTKAatGnRIASzqG
eJdIOVkJfnVdJxKJuMF9KBQa53dQW3VCJSWKxSL5fN7dnwTKhULBNb/Udb3Kb0OIE0kREs+MWsNV
lZSQoL+hocFVSkBZeaKmmsRisSpVi5QXFqVFOp12SYFQKOT6osj+JYCW4N40Tbf6j6QwSVukfarp
qShKQqGQq7gQHxipICNVaiRdRZ4yqiWc1eBOjFllH9InlaCQtsq4y1iLEiSRSFRVKlHTn4RAUasF
CZkmx0QlR1TiTcY5m80yPDzsBpuSylWvypFUUZKANRQKEQqFME3ziJ0/x0pAf6gDMzlnp0yZwsqV
KxkeHmZkZIQZM2a8a704DuaY1lf1OFWESL2xey+Mg0riTkZAqudya2urm4YEMG/ePFdpUzum6jyq
HTe18lXt9Vttn+M4dHZ20tlZvpd54oknmDlz5ri0z9p91vP1qVXh1aqKpD2yzumnn86TTz7JihUr
JiTIalNNJ3qv/q035nLtHB4epq2trep7tS9qVbbJ+qQal6vjXNtfy7I455xzmDNnDslksmrdicZw
suN7LJVYnchfyoOHQzWvPBzCcT3/p08d0xqs//zkB72jdAxgoPshvvS1R7jlrm9UvF48eHhneOGF
FzjzzDPdoDgSibgkiHhIyIU/EAgQj8cJh8NuUBoKhVxDTknTELJErZxTaxpaL3VBLQUsgXet6alp
mmQyGVdtIOREJpNxSQohc9QUEV3XGR0d5ZFHHuGkk07iwgsvRNM0IpGIq1AA3BK2YqCq3lCqCgy1
VK4E5moqykSmmKIOUVU1KvGgjo+qulArA8l7UWYEAgF3zITsEJXJ1q1b+drXvsaHP/xhvvCFL9DY
2FgVsGSzWUZGRhgZGWF4eJhsNlvlKSLzIB6PE41GSSQSxGIx12hTiBb1GKoQEqT2plS9gVaVQaZp
ks1myeVyZDIZUqmUeyyFdKo1/kwmkySTSTd1KJVKMWPGDG666SbvBD+EkMpWtUaoHt5bOBiyZ6J1
SqVS3bLMxWKRoaEhpk2bRqlUIpfLuWl9Q0NDTJ06FU3TGBoaIpFIuGS4Sv4eTlJKJZHfKWzbJpVK
0djYSD6fZ3R0dFy/jwTU1MV6ZMbBjJGQ1I7jMDIy4j5syGazZDIZpk6d6lajk4cP3nXDg4d3Dy54
4Oljpi0+73B48ODhr9Be4gAAIABJREFUaGDBggW8+OKLVakc6tOq2ooS9b6vt/xET48me6pU7ynP
RJ/Ve/pbr/KI+r1lWbS3twPwrW99q8pnpPYp3ERtneyp8/6oDN7uqdpE3ghv936i8bRtm1mzZgHw
t3/7t+RyubrjpKbAqNtWj3G9470/2J+niRMdz9rjONGYqT4ljuPQ1NTkndzvMGBWj53jOITDYW9g
3gdQVQ75fJ7XX3+d4447jp6esllZJBIhnU4zbdo0V003Y8YM7r77bs4++2yXABB1XDqdZnh4mK6u
LjRNIx6Pk06neeqpp4hEIvh8PrZv385HP/pRXnvtNcLhMI8//jizZs3ilVdeYfHixWzfvh3DMLjw
wgvdVLx4PE5fXx/pdJqmpiZ27drlbn/v3r3Mnz+f7du3u2q6448/nnw+z4YNGzj++OPJ5XLs2bOH
9vZ2otGo285QKMTLL7/M2WefzcjICH19fTQ2NlIsFmltbWXDhg3uOrZt8/TTT7N06VJyuRwdHR1s
2rSJadOmMWXKFBzH4a677mLRokUsWrSIZ5991q0QFw6H2bJlCxdccAHNzc0MDw/T3NxMNpvlzTff
5LjjjmP79u0uqZ9KpWhtbXWJZE3T6OjoIBaL8eqrrxKJRJg5cyYvvfQSs2bNIh6PUygUyGQyZLNZ
9uzZQ1tbG52dnWzevJnp06fz3//938yePZsTTjiB1157jYULF7rk+fTp09m2bVuV8nHu3Lm89dZb
tLS08PTTT7N8+XIaGxvx+XysXbuWD3/4w0yfPp3nnnuuqkJaT0+P28/3sirNgwcPHlniwYOH9xgi
kQhz58593/VbJNtenz14mJi8EtSmLXhPiN+7UP2o1q5dS29vL9OmTSMajbppb1BOH3zzzTe57LLL
XIXgK6+84ioOnn76ac4880x27NgBwK5duzjxxBMJhUIkEglaW1sZGhrCsiyWLl3Kr371K1asWEFD
QwOpVIodO3Zw5plnct9993HuuefS29tLJpNxVX5+v5/vfve7TJs2Ddu2mT17Nrt27aKxsRGAp556
ilgsRkdHB6+99hozZ87kjTfe4Mknn6S7u5tsNkswGOS5554jHo+Ty+Xo7u5mxowZhMNh/H4/Tz31
FIODg2zfvp1YLEYkEmHKlCmsW7eOD37wgwwODpJOp3n11VdZt24dc+fOxbIsVq5cSbFYZN++fXR3
d9PW1sYTTzzB6aefzq5du9i1axf5fJ6FCxeydetWpk6dyuDgIM3Nzfzrv/4r/f39TJkyhYaGBvL5
fJVZ+K5duzjjjDN46qmn+MQnPsHs2bN56KGHmDNnDr/61a9oamrihRdecMfhjTfeIBKJkEgkmDlz
JqlUigceeIBgMEgkEsGyLH7729+STCZ5/fXXMU2TWCzGf/zHfzBv3jz27t3rekNt376dzZs3UyqV
OP7449m3b59bHe2UU05B0zQ2bdrEKaecwvbt29mzZw8+n88lWaZMmTJOfejBgwcP+wNj3qe+8L+O
5QZ+dqFnRHFMBLbJuVz8qXNpDhjeYHg4ZDfG76eX3HCq+exen9+bLy+YP7TEST1Fl4f3LqRcvG3b
LFq0iK6uLpLJJCeeeCK9vb0kk0nmzJnDsmXL0HWd/v5+QqEQy5cvZ9++fZRKJdrb2wmHw5xyyimu
j1JraytvvfUW999/Px/72McYGhqit7eXhoYGOjs7+Zd/+RdOPvlkpk+fzhNPPMG5557Lm2++SSAQ
YOHChfT29lIqlUgkEvT19dHW1sZxxx3HCSecQFNTE3PmzOGtt95i1qxZLFq0iJkzZ/L666+zYMEC
NE1j+vTpbkpIsVjkIx/5CM888wznn38+u3fvZtGiRUSjUebMmcPo6ChLliwhm83S1tbGjBkzeP75
51mwYAGFQoG9e/fS1dXlpl82Nzdz2mmnEYlE0HXdJX5M0yQSidDU1MS9997LqlWrSKfTdHd386EP
fYhCoUBvby/t7e1uVZ/58+dz/PHHk0gkOPHEE+np6aG5udkd823bttHY2OiqJWfNmuWmnp511lm8
/vrrLFmyxPWZam9vp7W1FV3X6e7uJplMEo1GcRyHjo4OTjrpJNeAXNM05syZwwknnEAymWTWrFnM
mjWLkZGR8r1oJEJ7ezuRSISGhgYCgQCPPvoou3fvprGxEcMweOCBB/jEJz7B3r172bFjBytWrKhK
bfXgwcOxj/s29R4zbfE8Szx48ODBgwcPHjwcU1D9OySQVr1IJK1CPJNUH4taE1PTNPH7/VWmzlLB
StQs4kMViUTc/aipG3v27CEYDLrKCTHOVvcnn9W2v7Zd9TxV5LNawlX8lB5++GFWrVrleo1Iu9QS
vlLNTcy2VXPr2n4bhkEmk2F0dJS2tjZ3/dpxVNsqHlW1/a7te+1n9UxoZV/qGKtG4bXjpi5nmqY7
tlKxTNM0AoFAVT9V81iPKPHg4d2DY8mzxCNLPHjw4MGDBw8ePBxV1KrRJqtEo76v9Tuq51VUL4Vr
ogB6omo4+7ufiarCTLRcbSn32u1OFOTXa0c9Ymai/tUus79jXq+daln1Wm+qelV3ao/zZJ9N1o63
m0/19u/BgwePLDkQeJ4lHjx48ODBgwcPHo4q6hEhExEEExELE5ETB7KsGvxPREjUmpDXI2Am64u6
/bcrjyzfTWRQejBG3PWIi/0d83rvVdKn3jL1xn9/PzvQvu3PcffgwYOH/YVHlnjw4MGDBw8ePHg4
6jgYb5rDtWzt8hO9fyf7nai/9ZaXVJvDMd4H06eDGeOjpezwFCUePHg4WHg1tDx48ODBgwcPHjx4
8ODBgwcPHhR4ZImHo4JCepAB0xsHDx48ePDgwYMHDx48ePBw7MEjSyoY6HmeC/7qB/UD+2wff/n/
fIsf96SOQEtMfnvnrXzsvFV87JKbjugYpHp+x9ev/Wv+8IILOOOsC/iTL36VtY9tpvB2Y9f9EJ++
+K+r3r+ZNidcpmD2ctPV1/Jkz2D9dvT/jj+54DIe7h70JqYHDx48ePDgwYMHDx48eDji8DxLKohN
mcsNV7Qd9XYUzN388rENnPqlW1m9cv6R27G5mzVf+wY9C1Zxy7dWk4zBxqce5PZvXg/J27lkScvE
Y9e6jGu/Mmfy8VWXMU3SaU9W4sGDBw8ePHjw4MGDBw8ejk2878iSH3/rNta1nc0/f24BAKl9m/i/
b/4Nn/nTpdz5f17lP2/7IgDbNjzNrff+llf3lTjhAwtIFce2sWvLK9z6o0d4tmeYZNtxXPX5i/j4
/ERlvee59d7HeLEvTbKtnc9/7nw+u7gNiil+fO/P+Jcnu0kT4oTFJ3HtFR/l+Ii/qn1rrr6WJ3cP
wfevx0xfz+rle7jmxnV0zRziyZczXHbrGlaYL7Dm+2t5qXeI5Mx5fO5LV3Hx8k4Guh/imhvXsXRJ
gOdf3opJgj/60mUEnvpP7l2/GZN2rvr7azlv4Xjio5DeTU86yvmfuYBFXUkA2j75RQJDRTYODgHl
dba//BC33/kgL23aQaxlMVd+ZTWnRl/g1m8+wr/f/+2abW5hzZdvoKfzEr52Ee4yd994My8N7eGl
q68mfeuaSYmYeujbuI41t93F81v2kJy5mCuvWc15lW289thPuP3O/6R79xBEp/GRz3yR1Z89jXRl
bGQcP3X1J3hi7e85dUmAJ9dvJm1GWXHpVaz+5CkEveuCBw8ePHjw4MGDBw8ePLyv8b5Lwzlt5Wz6
NmxgV4X8eOPFFzHbFnNiYoy0SPVt4u/ufIbjzr6In/zvP+U09vLmSL783chbXPfdh4kvXsmDt61m
9coEt3/3Xp7Zlyuv90+P0bbiPB68bTXXrmzjR/90L//Vk2Lbhsf40QYf/3zbDfzP//5Tjh/ZxO2P
bRvXvtXfu5UVLdO48tY7+IfPngJAevcG0l2XcM9da/hIbCs33bKW1rOv5L6f3MXqj8/h3ltudlNW
0rs3MDjzAu5Zu5ZrPx7ljhtvpmfJxdx3/1quPSfA3T9cV3dcgsk5nL88xh033swPHniE17p3UyDA
h65YzRcrCpdU/zPcdMNdxD54Cfc8+G+s/niU229Zw1u50rjtpdO93P61m+mZeTHf/Moqosp3l/39
9SxNTGP19753wERJavAVbrrxDmLLL+G+n9zFVR9v4Y4bbua5/jQDPeu49TsP8ZGvrOGRRx/i+185
g+fv+QFP9qTHjeM5sxtI795A/8xV3Ln2fu78+oW8dM8dPN+f9q4KHjx48ODBgwcPHjx48OCRJe8v
tM0/iVnZXtb1pKCYYt1z/Zywci4xZZltWzaQnrKYv1g5l+mNbXzm4lWc0Bgqf7dhPbsaF7D6wpOZ
3pjg7LM/ytlT0vxswz7e2PAi6baTWP2xE5nemODMs8/j853wX8/1E4iEMEf6+dmTG+grNnHt9V/m
ux+bu3+N9rfzRxcto621hf6XHiHdcRZXffYM2pItfOiTX+RzC+CXj28FIOBv59yV8wkCHQvnk0zM
5/zT5xMkQMeCdhjcMcFOYlxw3RpuueIM+tc/xHVXX87Z513M333nQfoqGTM9L69jsPXDXPXJM2iL
JfnQZ1fzna9fxbRwjUDJHOLuG2/gSXMZt3zlQuKH8Pj1rH+I/uQfcNWlH6Ut2cL/9cnL+EjrED9f
v4Pm1mV88wdruHhJC4X0IGaghVigyKCk/CjjGPVDIDqH889ZRjwAyY7FdARMegYz3lXBgwcPHjx4
8ODBgwcPHt7neN+l4QQjrZy9OMTPntvB2ZEiL+xrYvX8KTDS6y4zsGWIWGMXAfkgEqItUh6qgb4U
gz0bOO/P1ldt9+S+NAPFNLEpC8bWw0/zlBipfSmmz1/JP34+xL/89yP88b3/QaztOFZfcREf70y8
bZsDsQTJQHmrg71DxFpOU/YRINmaIN0/VOE8oiRj8m2UQCBAQP4NBIDiZHvipJUXctLKCwHo636G
2/9hDdd9M8APr1tFuneIQGw+7uaJMbcrxkD3hmquJLOHHnMO9L/A8z2DnFdJ65kID99yJbc+XiZx
Yi0f5r5vnTXhsoO9QwxueYKLVj1c9fnS3iFgGs//7Hbu/sULpAMJurpaSJsmZqXP6jiWP/CP9UXG
qehdFDx48ODBgwcPHjx48ODBI0ved/Bz8orF/OhHL/Jrfx7mL+aERj/pkbEl4m0h0j37MKHsX1HM
M5Atp5o0TwnR1vkh/u36s13FRGpkCCIx3njsedLPKeuRo68vTbwjTGrfPuKdJ/HPX/8whewQP7v3
Xm7/0W/5+E3nH1DrkzNjpB/foewjTX/vELHOGDBUoTwOHG8+toZrvj/Ed+66nrkVBqGt6zQ+d9Fi
rvvZZmAVyZkJzPW9pE0IBgBzkIcfeILGedUCpUBiHjd863p67ryBu2+7n1O/9cVJ973iSzdzz6UV
9UcgCmyduP8tUVoXXMyd37t8bPwHd0MswWuPreGOp4rcctdaTmqNURh8hS9d/o1J9x3wrgHV+OFy
bww8ePDgwYMHDx48ePBwaPGF9R5Z8m5Ac+cCjucZ/uXXJS76y4sIAqpTxfEnn0rzf/+c/+/XM7n0
A1NY9+CveXEkzxnAcYtPJXb/z1jz61b+bMVc0lt+z9989zHO+Msr+bPFJxF48OHydx+YzRvPPcaP
t5T4s4vb2bbhYf7qwRQ3fPkiTusI0RwJEYw0HXDbu5afReCeO7j9gTlctnIx3Y+t5acbi1z2hXnA
swc9Jh1LVtHFV7nua7dz5aVn0dUSpX/LBu6+5wU6Vl4LQOuSs2j9/re544ETufITi+l+7G7u/q8h
/uaE8QF2IBDjI1dcxS+/eD23/+oMrlpQ9SWxQJHu3j2kOpLEky3EFfFJqn8rmEUGh4YYGKzeZsfy
VcTu/Ha5/+csI73pUa67YS0rblrDisEMgUCUWCBAwRzkl/fcRXcmzalFjxU5IPzRT70x8ODBgwcP
Hjx48ODBw6HBT//oXdns9yVZEvRP5aMnT+GZJ32c3Rkb9318ygJu+fMcN937EJ+6P88JJy/mD6ak
K9/N5R/+8qPc+qNHuPDe+wlEmvj4xZ/iLxZPJchU/vHP89x678NceG+eto52Pv/n/z977x8WZZkv
/r/OJ+bhAgbEmUsYFkQwmE+BHWCzUY+YSYW0uqYmVuj6Iw3NxY7ShrqRbmTrj9Nim5wKji7mRy3D
FdeDZ5HdsBQPRha4K5y9wA1EWAe8GBEGuHyGvuf7xyC/mXmGH4Z1v66LK5t5nvt+3+9f94/nfu5Z
xjP3u4P/U/y8+jgpb6ZitjgR/MBDbF3t+FN8d/+ZbE9uIfW9DJ5734zu/geIS07h6RANDVeGoBPN
A2zf+yYZ72SSunUzZgtovP0wzE4gftk0a926yWxOWULqOxks3H8TzfiHSXgtgUDpqwHLjF89jaT3
0in+5YyuzyVvIh/xI/WtTcivpbJl1v197pUtN8nYsp6Mbp/pJidwdOdP2JqygtR3Mnnu/V1Ibl7E
rN5E/CPj4cEVRF7cxerF81GP9SNyYSzzHjyMsfomPChylEAgEAgEAoFAIBAIlPFP846d/9/RLOAf
nvkXYSWB4G6x/xGxs0QgEAgEAoFAIBAMH8cWKX4N5+nf//eoEfv/CMsJBAKBQCAQCAQCgUAgEHQh
FksEAoFAIBAIBAKBQCAQCLohFksEAoFAIBAIBAKBQCAQCLohFksEAoFAIBAIBAKBQCAQCLohFksE
AoFAIBAIBAKBQCAQCLohFksEAoFAIBAIBAKBQCAQCLohFksEAoFAIBAIBAKBQCAQCLrhJFQgEAgc
4Y21ieTfaBvwe1348xx9/dHRIax8iz8cyqLMN4otsycK49mhOGcvGzLL0AREkf2b2B+cT8ckbWPL
FJ1whHuA19YmUqDAZnfTtqPVj+62XMNV30B9jcY3mPj4OJ6a5GDZ/fQHSv1IIBAIBD9MfpA7S26b
TTTIw3+tQCAYTbSSvv3XpJ76CpOlXahDIBAIvgeYaivYue0tflNwTfQHAoFAIBhRfnA7S27L10hZ
/yaG13bydJBm2K7tTcOV/2Ldlj9xNGuPzeuul51gw7avOJr1pvBGwT1F+Jw1bH9W3+dzSeU6amSU
W4SdBIIfMgkpr7FCtqDx0gkd3CUdDHd9XX2NBWN5GalpRyhrbKcg+xyvRMaJ/kAgEAgEI8YP7zUc
WcZslof/2l6odQ+zOUls+xd8j5FUuLvZXhi5ffMaGZlZ5BZVYLYAKhfCDTNIWDOXYDcVANcrS8jI
PEVReQ1mC6g9vYmcM5eEhZNxB9K3buJIaRP+059nX+KjOAPIt/jNljc4WdWGYclG/m1h30Wbva+8
wbGqJgCKMvfw5NFA3vtgI8FuKq4WF3Ikr5CiyxWY8SBIH0b8mvlEeNluz6ur1lPU2M6i5O2sj9AC
8Gn6W6Tk1fR4/chem6y0cu54FhmnLlHdaME/IJBFS+N4OkI3JH1at5WriE96HtNneeQWVyKrNETO
XkDi0m71y618+skRMk5fwmhRYZg+m8ixFgWGb+XT41lknLqIscUVw/RoFkXUkLTnAprgaLJ3LlDc
PsWyKijrX3+2npJWD+LiJ1P0ST5XWjyIT05kkW+rXZ0pwWp7V+KTYqnOO01BSQ2M82Pe0udZETnR
6pcO+MhA8pbs+ZWiegBFfjwSvnj7ZjmrX9qLES2JG6PIz86npKIOtW8wK+LjCKec1IzTlNU2oQsO
JT7heWb4jVHsw2ChtCCftE/OcqXWBCoPwqdPJf6FvjaTW40c3pvFsfNlmN00RM2JJWFheGfb0ra+
1eOVkOH0OSWxYq8MJfoYyFfK0t5S1Jah6EBZrPdk8PXZ72vcI6YRN72Q5FMVyI0NoLCP8D+/v9/+
QKkfKY23IbdVIBAIBKOKH9xrOAe2vUnJzXpS16/n8KU6rped4NnY16noWBS5bf47r8auIKvM1Oda
gKtf/hf/unIJM5/4CQtWbiTry78D1p0kP1uyiTc2x/PkU0s4ePYMO3end9ZbeuYTXlqyhCef+AlP
Pr2CHR8VcrvP4oyJrHdeZ85TP2HmU7G8tDW9Uy6BYPRhoVm2cLvXX5c/3yJjVxrHzldgtjih8XQB
Sxsl5/PY+buL3O6YdKVs3U9+aQ2Slx8hARrMjXXkHt5PyvFSAKKiQwAwFl+kusVafkN9BUVVbYCG
GINfv9JpvDy6/kflhMZLg6SC0jNHWL39ILlFFZhaQW5toqzkHEkvv8UfK28NWStK2gQWPk1PI/nw
Baob20DVTnVVBanb32LvF8YBFm/t67OLJjJ2p5NbaSEoQIPcaiI/ez9pZ6511Z+ZRkr2Vxhb28Fi
oeizE6RmV9ht37nffUDK4QsYG9vB0krRZ8dISrvQxzeUt0+BrIrLMnEkI48rje1IuBLihQM6U0IT
Gbv3k1vahNrTCfONGo7s2UOaQ68D2JDX10NxPUr8eMR88Y5LWurYufsjjHjgP84JU20FqdveYNm2
jzC5avH3hOqKS+zcnsVVWbkPF+fsZ92eE5TVmpAB2dJE0Wd5JL2ZxfVeXWJ+WjoZn5Vbr2s0kXs4
nQy79hhOnxs4P9otw6GYtuUrttoyWB0ojXVHYmcwcvbU6dXyEo6dr7SuoXhqFfcRA/UHSv3IsX5j
ONoqEAgEArFY8h2w4o3XCR/rReLevSwJ83bo2ubqQlK2H0YXHc/Hn2SSOHciR7a/yR+vmAAw1/0V
c9ASDmamMjuwq2NuqP6cne/8F1FJqfzpz//Fe0kzKTqYTkG1uUd9V788zJEvVbyTdYKcwzsJullI
xn/+RXipYFRSkp3O3OdfJrrHXyKHL1uf9t22NIGXH0EBIex+fxfZ+1N5Z4l1UGuqqsEMmKpKudLa
jnpcGO/sSOL937zFvqT5xERHERXowW3AP3QGIa5OyK2V5JdbnwxWlxRiBDTB4YT79b8bZMmmjSwK
sMahYel6jv5mNTrLNTJ+V4gM+BuieO/93/Dx2wlEBbggW0xkpOcN+YwiJW1qqLlERl4l4EJc0i/J
+/hd3omfikQ7uYdP95kQKtVnd3Sh0Rz84DV+u/M14kKteigrqgGgub6cIx0Dd8OcVeR8lMrHb68i
xNX2ZsPmm+UcyLNOVAwLOu7bsYoQVc/7HG2fLVkdLUsTMIOPD77L8fcTCHFrdUhnStAER/HxwV0c
3b+LzdGBQDv5h/q3maLyuskbMValqJ7bLd8o8uOR8sXuhMxZw76diezeFMedl1VDHlvW8dl81ID5
RiXVja2KfPj2zW/IOGpdyIlcsIqcj97n4x3L0AHmqlKKantOTNW+D3PwYCqnDu5kUbDVd0o6fMcW
w+lz/aGkDEdjeiBfsdWWwepAaaw7wmDlLMlOY+YzLzHzmZdZtiWdksZ2wImoBTNAYR/RX38wodtq
iS0/Uhpvw9FWgUAgEIwuxK/hOMCVL/+E2f8JEp6fiTvg88wajF/Gk/vZNxgeA1R+LFr4MD4aNQ3d
Rjla3cPsTn8IH52G22YTsuSNWrJg6rVrRFKrkU1fcfL058ybPo1X9h4QShfcszi7jWd94vqOicM3
fHq6gvwi6xNVuaUBswyacePRAMYbl1i2bBMh4XoiDZOJWxzFhDuTgbHjmRehpex8HUVnyokLDaHg
jHXQGT77YbQA8i2+KK7E3HFwn6RyIWhS3x0npspLlLW2I6m8SYifT+hYFRBK/JrZFG05gbmqlOqW
+Whp7ac8vaJ2qxW0qbqqFCOg9gzE4OuK+WYrGn0YOtVFqmvLudLYik+vV4KU6FMrdV3vbwi16gZX
gny1UNqEuaXVurBbX4PR0o6k8iNuQRjukgr3wMksMpwm5bOBB/TmG5Vd983puE8/mUWR+aR0TKzu
LBg50j5bsjpaVvjcqfi4qcBtDDDGIZ0xoC912d4wdyo+klVWQ/QMNHmVmBtrqG6x4COpHI6TnvKi
qB5qlflx0Aj5YvchREjEeJwB2dMDNWACgiIDrZ+N06EBzLRjarHg7GXfh7lRSXWr1ccWzQnDXQJ3
/TQOHpyMcz+vTYU89igT3FTAGOtui4om5MZWu3ofTp8baNHUXhkzvByL6YF8xVZbBqsDpbHuCIOV
s2+ODSRu6SIWRY635kYlfYQdbPmR4n6jW/wPV1sFAoFAIBZLRgHKHgmart1E7T2NrrGLhEY3FrPx
Zsdix1g0ktRv+UXH0zjwn19hlsYSFOSNWZaR6Xk+gE/YErZvcOPAxwdY/f4e1OMfIuHVRJ4K8RYm
Eow6whck8NuloTavKS3IJiU93/qqRz+4+01ma0Ilyen5mCxtlJVcoqzkEhkZLsSsXEviXD3OqAiP
nob6/AmqSwspq1JRUNWEpPImJtz67n9zfQWpu/fTtUHehfgdiX0jsaUJGZDcPNB0C1W1pzdqwGhp
o7qxlaCW/sp7rVtE34ldC7LseJvM9dann+bGMjb8a3IvKdswtVgGpc/uaDxdujJV5xi+vWsi1rEQ
oO6mB42vh+1MeXOg+1x6Lqo42D5bsjpe1phB62xgX+qyvbrbhF1yc0ECZEsbpsZWGDtGkY/YkldJ
PTqFfhwROHK+aEWFzs06jJAkFySVE1hU6Dpk7/rM0tnL2rOHuaWuXx9zHuB8GY1XN9/puEZmaPEx
NJ04FgOOxfQYh9sy6ByhMNYdYbBy3jngVVKpcO53QdJ+H2FXNht+pLTfiOgW/4Ntq0AgEAjEYsmo
QpIkkOXOgZws38Ro7n8gpBmvxvxZDTJ0HLJnxnjtJur71cDNgSeMZzLIOG9he+ZhInRqbpv+wrqV
u/oO0o3XUD/4BL/NXMxtcx0n33uTjN9+wlPp64WnCu45GirPkrwnDxMuxKyMI84QBrUnWLb9XI/r
QmfFkj19DqWlZRQUlVJUfJErN9rIP5RFzPQkIsaq8NFPxjDuNPk3KjlwtA0joAudRshYhb+8I98Z
BHtYFztbmjDJgNudiU3XBM3f0xUG+NUECRXQ3mPyK7f2fVpor03qsdaBtOQZTEJ8FJoeOUmFfz9P
rZXqs2uArhpHtC3dAAAgAElEQVQw1Utjtag7Jt/d5/HmG22286WbS8d93fVnwVTZ1HOi72D7bMnq
WFlOPc4hcFRnSjDWNkHHAZ1yY9eEUuPp6pCP9Cev0nqkFoV+PEK+2Gue2k+cOA06J6jdvPv1seKC
i5hUHoRM0lt3V3TWrxrUkGb4fK5/lJThmH8O7CvSCOhAaaw7NN4apJxKDhN3qI/ob/HSpi6Ux9uQ
2yoQCASCUcUP7swSJAm1ZOHKtXqaZZA0Xqip4eSZv9BgqiN/32GqLXK/1wY98gRS9Z9J+/3nXDeZ
OPf7TI6VWYh67P/anqeZWpAkN9SSxG3ZRO7BTK60mOm9JlP9ZRYbXtnFuSt1oHZDo3ZDUlt3lVRc
ukip0Sw8VjCK6P+A19sd4WOqKscEqH3DWBE9jQlerhhLjXdu7VhIzOLZVeuZ84sjqPVhrFmznO2J
1nMOoOtpNJKWmEg/oJ2yEuv2akN0WOcvC7j7Tebo79/n886/VJbouw7wMze2clu2oPENI8jVCdlS
R1rGCUrrW7leWUpG5mnMgDogFP+xqgHK06Lz7Hh1oaSm47yHUk5e7jl5UNImTUAoGkBurAO38cyY
Eo6/VMeBT05xsqCm3wmoEn0qRTMuEH9XJ2SLkZNF1rNLmm+Wd/57wAmgbyg6lVV/Bw6d5XpLKxVf
nOXA+Z6HXg6mfQPKOoSyBqOzgWx/h6LsHD4tb6D5ppFjR/OtkyUvP/w7JvBKfEQJtupR6scj5YuD
RYk91J2+afWxqy0Wrl4+S8qeg6Ts/oCT5U0jntmGQydKyhjOmB5ulMb66Bnb2e4jOtZcevQHiv1B
YbwJBAKB4PvHD26521nyJvIRP1Lf2oT8WipbZv0zCaufYOe+N3nuPTWRP32aqPF/HuDamWxPbiH1
vQyee9+M7v4HiEtO4ekQDQ1XBq4z5KcriLy4i9WL56Me60fkwljmPXgYY/VNuL/rutDZ8cT/fQ87
16/EbFERFDaTza/+BIAju3chL3ydt575Z+G1glFBSXY6c7P7GWSPC+PUB2vRBOjR8BWm2gsk77Lg
L5koKLK+6y7LTcgWC/7Bwajlsxgbv2L1y5UEjXPF2HGwoX/EDEK6DUCDHnsUXXYFRkByDSRmkr03
0VX4e7lARRNlp9KZm+fH7veTiF8aRlLGV1QX5bOuKL/bQNqbhIRom++3h+g9oKqJsrz9zC04gtza
hrrXoahK2uQ+NowV0/1IPV9D6rZk0jxdkButuzqkgCg0/TxCVqJPFJ6Z4TxWz4rZepKyy8hN20NZ
jk7RgafuYwNZER1I8qkKyj47xnOfHbuj6h5oAx1v30AMpazh1Nkd5MYKUrYk9+hGY5bM7jhfRJmP
DLkeaaIiP5ZGyBcHvwhh3x7OYycS/2woGzIvUfbZMZbd8TFAEzyNeaHaEc9tw+G/SsqQRsA/hwul
sT6asN1H9N8fKMuXE4fUbwgEAoFALJbcQ0g8tWEXT23o+iTip2s4+tM13a5Z3Pmv3tdOeOQn/Dbz
J30HRkE/4WjWT/r9f2f1/bzymwxe6X7D8092/OMBjmbN7xBNw9Mb3uTpDX2l3nY4S3ir4J5CGziN
rQl1pB46y5WSrzD7BrMi4Xny07O40mqkpLaVWH04u3esJSPzFAWllZQ1mlB7aoiaPpv4pdN6PBXU
egUSMs4F4402dBFTCXKzN2pXYVg8n/CqjyipbULjax3ORsxezXteoRzJKaSktAITHoSEhhG/Zj4R
drbXRy5dRVxLFrlF5ciSBzELlhHpdoGkjEtdkww/JW1y5enEjagDsjiSV8aVG01IrhqiZs8lfvG0
jtf8HNdnsH6MYvtMWbqW7a5HSDt1keraBsKnR7MoookUmz8NqmLGC2vZKmWRceYiJtmVyFlziJQu
kpJdgeR2Z8rgePsGZvBlDbfOwIl5CcuRCvI5WVKJNM6PuKXPs2TKeId8ZDjqUeLHI+WLI5kTgvVj
iJi7ivc8c0j75CJltSYkVw/CDVEkvBDVuSg1sgyHTuyX4Tzs/jmcKI31UdTn2Owj+u8PlDKUfkMg
EAgE9y7/NO/Y+f8dzQL+4Zl/EVYSCO4W+x+BRcdGpWhXi7NZtz0PM07EvfEr1kwSz/LuNrdbjBw7
eg6zpwch+snMmKQFWsnatZu0ojpColfx/prJ38u2v7pqPUWNsCj5V6yP0N7z9QgE37dYF32EQCAQ
jGKOLYJVXyq69Onf//eoEVucOiUQCEY1V4uz2JB6FlPHr0VoAqYxTy8Gwd8FzioV1SWF5Na2ASfQ
jNNYDz1sbQc8iIkOFkoSCESsiz5CIBAIBN8LxGKJQCAY1ag9vZEs7YAT/sFhJCTOv0tb8QV9kLQk
JCegPnSC/OJKTDdMAOgCgolbGsvTgWOEjgQCEeuijxAIBALB9wLxGo5AIOhiFL+GIxAIBAKBQCAQ
CO5B7tHXcP6PsJxAIBAIBAKBQCAQCAQCQRdisUQgEAgEAoFAIBAIBAKBoBtisUQgEAgEAoFAIBAI
BAKBoBtisUQgEAgEAoFAIBAIBAKBoBtisUQgEAgEAoFAIBAIBAKBoBtisUQgEAgEAoFAIBAIBAKB
oBtisUQgEDiG3Mqnx4/w0suv8eQzLzFn1a94NTWL4vpWRbc33yzlZ89t4nB5Q49/27oOoKGmlHP9
XNd5fX0JP3tuE1mVt0aFmmy1rT/ste9uMBpkGC5WPbeeJ1elUtFisXvN3ZBjtOjjO42JEY5RWznD
0Xj8LnOBrbgciXYMtnwl1/Yoewj2H0q7He1LvgsbO2KThspCXlq1npnPrCcl59NB17vqufXMfOal
Hn9z1u7mj5cdKauVL84UclV2LPfea9jz3atfHGHOz3YrLMtqz6zyW0P2NUfk+i5zoOA78Nmma8S+
cpgPq5qFMsRiiUAguHtY+PRQGimHL+FviGJrcgKJS2dAVSFJWz6g+Kb9wZEk6Vg0N4oQTxfl18kN
ZOw+SO491MkrbScwOtp3D+p4qKjdVKjdPERbvyeM1pzhUC6423HZq/whyTpKc8rd8IuR1FvPsi3k
H8qh2i2M7W9sZLkhdMj1qj090Hh6IAHmG5Xs3LabLCX6kRvYu/kNktNPY7JYEIzufDKsPioY/X7i
5MlzMycxyV0SyhgiTkIFAoFAKbflBnLPX8OwZD1bFuo7Pg3FEK5jw0sfcKzoGhGzJ9osw9lNy9NL
ZwPQfFPZdchtwL01GOshvyJGQ/t+WAPe3+5PFW39HjFac4bjueBux6VlGGUdfTnlbvjFSOqtZ9mt
GBvb8Q+fzIxJ1r52wlLd4CdUKm+2vv0aU8aquN1iJHXrbnKrmsg9XUmsXmt7PGCxUH2jFRCT7+/K
n5vrv0sfFYxqP3F155l5YUIRw4BYLBEIBA4OrlQYa400o8e94zP3sXq279iI7Nk1aGu++Q0HMk9R
UFyO0aIifPpsNr8QhVouZ91LB4lJSWLeuJ5lX/0imw17zhG5JoH48LbO60zpu8mtbYPMPSwomk92
iv0O/3aLkQPpRzhZVIEZF8INM0hYM5dgNxUADZUXScs8TVF5DWYL6AJCiE9YxuOBY2iuL2XdK1kY
ZvuRn/MVkj6KfRtD2PByFoalYZScukBZbRO6gDASNj7PDL8xfepvvlnarZ1Gm/fu3dK3ffbkb64p
JePwaQqKK8FrPDHRgeQfLSfx3SRCLOV95D+aEmuzzY7LYKH49AlSPzlLdWM7mnF+xDwby4pZepx7
6aKhspDVvziIFBrFvHFGjpwvQ3bzZt7SOAxcIu1QIcYWFYbo+Wx+YRruwNXLZ0nNOEVJbRPghH9w
KAkJy5ji59pp32O/y+JYUTmmVvAPDiMhIZYp3W0hQ1nBCXZ+UsiVFoicNZ/ElY+i7XjQsuq59VS7
BfKn/YncvlnO6pf2YvKaTPxjcOzUJapbwDB9DpvXPN55T/PNb8hI+4jckhpw1WCYNZvEpV1l2sPe
/bba3VxfwuqX0jEHTCXKs4aTJUZmPjufyuMn7Mo92Lam7fmI/NIaNAEhxM3140BaHlL48xx9/dF+
22fLx/rowoYPTxmrorn+GzIyj5FfXNnpf4lr5jLBTTVgjA6UMw5u9AMsVJdf5NX0sxRVNeEfHMqK
Nc9bY/5mqTVGnw2lJOciZTdaCQl/lIQ1UynI/IiTxZXg5seKhFXERugc8n9HckFveselvXYoyX32
yr8j6xK91nae6ZjUDyRLn7ITvDvr/WPqr8ioD2XfzljuTMlLz+wj+Wg777y7lgl24ql3X2FLp931
b78vsW1XJf3aEr3Wpg06fU1hf9DdJmWpb1Fwow2q0nkyL5C3fzObt1850mWvAeTz6cf2fSfTOqKm
B5JbVYb5xi3SN2/iSEUri5JfY32Hz/9x7252flZDVMKrqHPSKGpsB+rYsOxl5iVt45UpOkW5F/kW
f/zkBMeKyrhS24p/gJ64lbE8Ncl6v9Ic1Z0dLydiemwV/7Yw1Cpr6lukFrvyzgcbCXVT0VxzkXVb
sonbkUSk1OBYbkkI7pnnakrJOHyKguJrqH31REWoHB5LXSnK46XUQspuQEj4ZBITYgkeq6K5voR1
L3/EvB2/JLYjpq9+cYR1aTWc+n9JPfOJJ4rlcjQP2cvPPXKcApk3vHyEkNmhlBVcwtgCIRGTWbFy
DqFjXTvKsJHv7cRMn76l6Rprf32BaT+dwNefVXC5vg0f3wlsXD6dx7xdaW6o4oVfn2fhxgU83zGm
qPpLAS8caSB/59Nd98f48fXn33DZJDPpgQfYuFjP59kFHP+fG+Ci4cUlUTz/oGfH9ed56F/8+Gvx
Va63waQHJvLiwh/zkIczOQeySDP5cThxWme+++sX+bya+y0f/PJJAmy6Tztfnf+SnX/8G1ebv0Wj
0TA3ZhovTvGx5qSmev7j+Nd8/rfrXLfcx49/HMbWBaG4t1/nhTfOMnf9PBZqGkdQvu8/4jUcgUCg
fKVa0hG3IIzqzz5i4apf8UZ6Nucuf0OzrMIncCITOjo95AbStqWRX+9C4utJvLcpFrkoh+TfXUQe
oOzrlz8lac85wpeuJWFWz90p8SlJxPi6YFi5kY8VLJQg3yLjzT3k1nuQsOlVDu5Yi67xIklvnqBB
tk4mdm7/kGrPybzz9nYOvr2RcFUNqXtOcL1DQLm1jtyCJuI3riFx8YzOz05mV7IoPoGcfduIdLtG
6p5TNMgKRLJxb5/2KZJ/PwX1rsRvWk/8Y97kHsrvsRW6t/z22uyoDA2VhezMLCEmfj0f79tOYrQ3
x9I/pKBm4LNrjKX5nKxVETUrBBrrOJa2h+T0EoIMYehUrRScOkLGF0aab5azc1cWJbWthISHEe7r
SnXFJVIzC7kNwC0O7NpDxmdlmPEgyNeV6oqvSNl+sMd78nJrBamZJagD/NBY2ijI+4iMoms27WSu
vUBGXh3h0ycTpLJQ9Nkx0s5/Yx3Ay0ZSt6RxsqQGTXAw/m5tFJz6iKT0O3LZWcCzc7/9dnfIWHWB
k6VN+I/T8uD9GrtyD6atyLfI2J5GbmkNuHqjtlSSmpaHyc4Cpb246nmtDR+WG0jblUZ+rQsrEhLY
vWY2cnk+Gzr8b6AYtZkzLG3kHyokaG4s7+1YRZClnLS0Uz3KO5ljZEXyLzn+/looP8u6l/dgDo1m
3/6dxIfDgfQTXB2k/yvJBb1xuB124lZR+UptZEcWW2WHR0+DqhJKOvXVSsHpCnSGqXYXSvrrK5Tq
1F5fYtOuSvs1BTZwqD/oxtZ3t7EowIOQOWvI+TiJia7dnnnakE9Zfmqg4HwNAOpxY4icHQy0U3Sm
ktt3vi8xIqm8iQnVERKqR93x3DUkNIwQLxeFubeVw3v2sDP7AldqW9F4QnVVGTu37eZwr/NSHMlr
kaE6qovKaQaQmygqb0JuNVJWa/Wx6ooSzGMDCfdsH1Juud1yjdTt+ymq9yBh03pWRHiQm30J2YEN
S7KlifycEoLmxvFO0nyk2oskbc9SNJYYOP86JpctH1QU+w4it5rIPWMkLjGJj99NwL+llOTtHX2D
wnzvyPhLbrvF8T/f4LnFMXz65iJmujSw88OvaVDYBLntFsc/v8WLaxfwx61PwNW/serXpzAHhXHo
zTh+/iD8xydfUnWny2ozk1N0i+XL5/GHX8YQ0FbDqx98yT8s8OPpeqi9yld1dyLxNp+fv86PHgq2
uxDRUFNByvGrzF0cw4k3n2XzdE8+/uRzPq+7DZZmUvfmkmeS2Lx2HvtXT0X+69e8mv1Nn5gfKfnE
zhKBQCDoRejs5RwMDONIzjkKzuSRn5cHuBC1IJbEpdZdAdfLL1JQ70Li23EdOwHGsznRQkGtS7+L
JcbysyQfPUfQ4lVsnmt9gtf9OueOZC2B9amtbKG5W6ctubn2HEyXXyC/yoXN78Yxxcv6XfzKuZRs
OUF+VTTzxlmIXBBLyKxpHU9btcQtCKMgrQazxdIxAATDs7E8NWV8x1MZ6yAucmksj0+yfhYzR8/J
tBqMFgtayX6PMtC9ob3aZ09+w818Slq0bN2xjCljXSFCj05qI+mQsUd93eW/ffOazTb7OChDpNyA
GdCM1eIzVovPwjjem2RE4+U6YPsl10C2blpFqFsT5uK3yL/RRuSaVWybNZFzbg0kZ1dQXdGANElH
3AuxmFwDeXrK+K4dFTdqMMlA1UVOljah9p3KvreX4yO18oe9BymyaDG3WKDzKaoLCSmJxOq1FOfs
ZUNmGdWlDRA53oaVPEhITuApP1eKvRrYkFmGsdwEsyZSXZxP/o02gh5bxjtrJiNZGti5ZTcF5/Mp
WzqZiLG2fcDe/SGS1ma71d1kTNzxS54OHMPtm+X8lx25B9PW61UXyK9qQ+37MO+9vZwJEp1PlW3M
ABTFFYDxsm0fvlqaT0GtB5vfXcUML1cglKBgD9b9Iotj5VHEeQ0co/3ljDv5xLByGWs6dKJeXMa6
NCMmiwVdZ8zM79idpCIy0BVjy2RWzA1HCxhmhZBx/hKmFgtSi+P+ryQX9M4jjrZDrrQdt7H6MYrK
V2Ij7MiitVG2Rh9GiOdpcktqeNxPT3N9OQVVTixaE2gzv9vqKwbSqb+tvqS3C9uw6/Xyc4r6NXu5
M2acY/1Bj76wwz/6+85ev9tvey11pPwiGQkL5sY2a3kqDYvmBuPv6UKQ6hLG0otUt0xGXVtKSWM7
6tBphHi5Ij07n/zzpZS0aInftIqIHrtXBs69DZUXOVZUh+QZzO4da4nwcqX49IckZVzgWGY+Mb+J
7ZHrlOa1oOnByAUVVLdY8L95jSsWD8J9mygqryNW70pZQQ260LnIFYPILfXGbnFxjpJGLVtTllnt
G6FHQwPJOe0OTb8i16zilY52+HvB6i2nyK+aQ4zn4MZmg5FrIB9UK4x9h1A5EbMylsf1WkDLijXz
KXr5Iwqq5mBosWMTXwY1/pr506lEB1v3Ssyd6cPxIw38w9JOgEKRp8U8wjRvV+A+ZvpK/KNtIi8+
FoAWmGbw49+/vkpDW7t1N4bTfcxdOJXoAOue6xcXP0Lhr8/zee2PWRgwgYc8LpHzPyaivX1obrjO
57X38dxiL/uLYG3NNANaDzU/8nDnR09M53dBt9BqnPlH1d/43CSxOWk607ydAS1bl3/L53VS35cN
R0g+sVgiEAgE/eCjD+eVxHBeAa7XlJN/Kp8D2Qcxu3rwbwtDMdVWgpsOf6+uDmxCxKNMiLBuBe2B
pYmTmXnWp1NeHv0O6HrzaeZuUvK6Jm0xSdtICOz63lRbiclSR9JLr/S590p9E8768cTMcqWo4Cwn
yyuprq2hrKIOVH6dg09J5YJuXK+Jj8oFf8+uz9RuHkiWGhQ9DHLgXnvy+1cZkcb64d9tEqHTB6Om
ayDTW37nsfbb7IgM8wyPEqO/yM4tyaSN88MQMZl5c6YSbOOpsDRWg8ZNBZITGjfghgtB46yTN42v
a8dkxYKzm5bw8EAKzl/kta0fUVJaiRlQt1gH83K99f/9A/RoJABXnl6/lqd716fSEuJrPdRU7Wn9
r7mlzaaZJJUW/45Fj657rMMOU4VVv1c+O8jczw52u6sJY0srjB1js2x790eMtd3uThk9vQnpNSm3
Jfdg2mquv4YZCAoIRdcxEA2J1IONxRJHfMxYYduHTbVG8PIjqHvMeAXi7wbVtbfAa4AYtReDvmO6
TcJdwNKGWe76vqs8FWo3JySVd9fETbIegiljQaN33P+HJY/YaYdsJ27Rj1E++aqwn2ds6tTG2qGz
pCPGoCP1zEUaogOpLrqA2UuPwXcMn2a+1Te/6+30FUPVaecizsB2LVXYr9nLnYwbPnl75+yB5LOF
ubGpy76+wcStjOOpQOuCYVSoBxkllRRVNuFfcgkzEDMrBHewuVvFVu41lpdhAoI6Fl2suWUG/pkX
qa6vxNhiIWgQeU0TGIa/dIGCyiaiGi8hjwslZtI1DhRV0jDLhaKqNsIXBGKqKhxSbjFWGMHTu4f9
/MMDUZ+uUGwrydUDQ4C2Z/2qVq7Ut8FgF0sclcuGDyqKfYcXSzw6fcKaK3To3CyU1TYR1GIn3/sO
ImacJAK6HW6qdnFBsjQojzEnCR/NnfvvQ+1yH85Onl39gcq1oz/4tlOfk7rtrpJcPPFx+ZbLdW08
H6BlzkNj2Fn0dxqmj6PqrxU0a3w6FmJsow14kLkB35Cy5yipGg3THrifhY8Fo1fBX+vrwcWTAM19
ndcHPPggAQ9aX0Xqbe+RkE8slggEAkE3GioLScuuJG5NbOf77z5+epasCUTd8hYHzl+ChaFIkhOO
HKIXEv08MVwgLTOLmND1hNp5Qm9YsIx3pndNenWBWmgx9hqMBLM9JQ7/Xu9qqz21NN8sJ/kXe7ni
FkiUIZR5hkeJay0kOb37RFCFRuqdIlXWR3qDGyk4dK8t+cvqUdDh95RfWZuVy+AswfqUXzGvvJyC
govkF51mQ95p4t94jSWTtAMMoF07VKDqnEmp3awySt26o+b6EpJe2U9ZK4SEhzFvSSD5h/Mx93aL
7i4mW6D30yU3l06VSyple0klNxfUqv7vkWXrE7qQxxaRMDuwh651XvYnofbuV9puSeXaRzZbcg+m
rXd0Kw+o8L445GOudnxY2QpkPzFq+3q15Nj3kjTQZF/rsP8PTx6x3w5bcesQrsryjHqQbQmZNQMp
L4ei2hmUnakk6LFV+Eig7i+/yw12+oqh6tS+XQ0O9Gs2bdBSOmzy9vRVx/pda9x7s/391/qcQXHH
AQyzQskoOUf+mRL8K2qQVH5EhSs4UNZW7rUTs9Ig85qzm47IACcKSirR1degmzSfkHAPOFNOWTlU
482KQA/k8pHILYMJ4z6JvWcXZunevVmGtJDmcB5yZXD1OSSzBVm2WIcC8hDl7Zf7bC7YAtBt043c
/m0vMe7Dva+JHOBb5PZvO2V4yPAgzue/prDuFpeL6tFPieJHCspzVrmTuH4RC6uu8/nX35D310u8
9N+X+HnCAqY53Qd3FmscZnjk+yEgziwRCAQOUXK+kGN9zn2wWJ/2qKyr1upx46HFSHV9V8959Ysj
/OzlfVyz9NoSqvIgclYoMYsXEU4lqYcGer9a1dmRuXuNJ2KSvvOv9+F1Gl9vJEsdJlzw8dLi46VF
LV8jIzObkvpWqovyKZPHs3vHel5ZOpvHp+ih9rv+idGu9tmTX+erg5s1VLd0nY9grKzAbKN0ZW1W
LsPVy4XsPX4JjT6UJS8sZ/8H21gUAPlnKoesiStFFyhrbSd8ziref301cZHBPQZiaq9A1ICp8iLV
LRbgFnu3JjPzmU193nkfTnR66wGVphtN+OsnEuSr4uTRU5wsKFc01rN3v712d+HESP8YoNp3vFXH
5R06llspyrM9y3Akruz5sCZQB/U1XGns+t5cX0l1Cz12MiiNqeFmJP1/KO2wF7eOlD+YPOOI7Frf
EAy+7ZzMO0dJvQsxBj/b+V1xXzF4mWzZVWm/NjgbDN13bcl3VR7cWRP+oVMJcXXiymcnyK9tQxM6
mZA7CysqRxc37+jHmr+rSwsp69BHWcE5qi3tqH0DrbsPB4UrIZGBVBcVkl/eSki4Dl1gMBpqOJZT
iBQQhr+basi5RRc8Hhp73m+sqnEsLixtXLnRtaPHfLMOY4uKIC+XjkUUCya5vVv5DXbXwYZFrsHG
vhKZLU0dB5d307nFlRBfj2HK946kAOsiQ4Ola6HhHzXmof1QlqWNr+q7FnnNpnqqLFLnbg6ttx/T
vL/l+Pn/4SuTxNyHNIqKraooJ/XPV9EGjGf5wpkc3raI53whr6getUYLbY1UmbraUfWXAmLfyqfa
8v/dFfl+CIidJQKBQDHawDBWTM8nNW0PxuJpREbo0dBKUUE+uSVtxCVPA8BHP5ko39OkpWWhXhOF
VF/JgYxC1IbleKv6TzvOYycSv3Ia6/ac4ORsfed73QBILmhcoaT4EsWhWiICbT8h9dE/SpTvOVK3
p2NaOofwcRaOZR6kqEXPirEqZDcXaK2k5PI1dPoxlJXkk5pdASpvZPk7UGzv9tmRX+cVhcFtNzt3
HST+2Sik2otkHLoEeA9chb02uzkmg9TYRO7h05glJ+IM4zFXllBUbyEoeugdrNrTpWPRJJ8s3wZK
8vIwApLcimyxMCFgMjHBeRyrKGP1sk3oPC0YG9tRe4ZgCPQYMTP5R0Rh8LxIUWkez71cgT8NlNU2
4S+FKHq6bu9+e+2+m/gETCYy4DS5VWWsXrUJjaoNk515nuRAXOkibPvwhNAoDF6F7Ny+H9OS2egs
1zhy6BRmrzDm6bXQaHQopoI8hzlkGTn/H0o77OU+R8q3ZyOHZXfr/f0YomYFcjLzHJrgKML9lG35
ttlXOJpre/Ultuzqow9U1K/ZtYHMiPiurX5XJw1uAcJ57HhiJmkpK6oDILzjFRwAZ1Ro3FTIjXUk
b3mLeSvXsmaKTlFumReaz5HSCja8tAmNpwpTYxvgQdwLUWhhkItg4B8cjlS7nzKVHyt8PXB2cyF8
HBwpqSG6k8wAACAASURBVCMqIRB3wH2IuWVCRBRRARdJ3bUf89LZHXFRBqqu3YLFZz7lCuOJnaXv
twzZ0kZuZg5RvnHo5Eoy0rIgNIqowDG4y+0EeUJuZjYhK6OQa78i43QlqMYPWS7FiyUOxr67m86+
zJZ28tP3o26Zj8GtgSOHTkHANKJ8x6D1tWOTFuOwplV3F0/0HpCT/SWTFkxCrv87//7f9aAaQv5u
/5Y/fZKPe9sjTHMx8+F/fg2+wUTfeZVF5cqTBi+OZ/8NzYRQHvZ2VuQvEm3k/Oclmp3uY/lDWppr
r1Jo+hb9dHd+FOBFtPclUg9fwH3xJCRTPf/xSQXuDz2Kt+r/3BX5fgiInSUCgcABXHk6YSNbV07D
XH6JtLT9pKSf4IpFR2LyRtZEdAyUJC0JyRuJGltHypZfs2HPCSTDfLaunGzziXiwYQ7zguFAWg51
lp71Rs6ejFyaT0r6aQUDYmv9i0KdOJKexrpt+6n2DGN7yjImuKkINswnIdqPI3v+jYWr3+JIgYXE
N5aho42ybk977qZee7TPjvzOko7ElLWES0ZSt+8hLc9IZHQItrbE22+zYzL4TIpie/w0yrIPsuyl
ZJIyzxH+7Fo2z544ZG0EG+aT8Fgw3KggLTMPWT+VKF8X5NY6rtS3gjSG+Nc3Ejc9GLWqDWMj+Ic+
zNY3lvX786jDhbPbeLbu2Mi88ECor6Ss1kL49PlsT3i0cwIxlPvttvuuLuBpSUhOICbUD8liQe37
MInxU5EAaQAdOxJXdn1Y0pL4RgIxvm1k7NlDcno+6tAZvPNGHD7SIGJquBeTRtD/h9QOO3HrSPmD
yTOOyh5kmIoOCJ/9MFqHcsRAfcXQZLJpV6X9msM2GCbftSGf86D9T0V4dKg17lV+xITqetQ3b8E0
dCrrWVOKF3SlMaxITiRxzlSCxrliarTgHxDC5h1JxOq1Q4oWd69Awn1dUPvqO846cSV8kjegITK0
a3wypNwiaUnYlECUl4W0XXtJyzMStXRqjwOsi07nceT0wLvMJFcNkeEqdm5J5rlf7MfoNZXdiVHW
fkTSEp8YRxCVJG/bw4Ezt1ixJgqNNHS5FPd1jsa+EplVLhhm6SnJPtih89m88/p8689ADznfO+rW
7vx8+XT01JOUdor/+KKNFxeHoh3KFgIniWkGH77681le/eQy7kFhfLD2kc6DrgH0DwXjAzw8/f4e
+c6Wv/woOJR/WxzM5T+fZXHKUf41+394OOYJtk73ApU7G9fOIdqjkdf2ZPPSh18iPfQI2xfe3zfm
R0i+HwL/NO/Y+f8dzQL+4Zl/EfNTgeBusf8RWHRM6GGUc/umkZKqVkIiJnZO0ktPf0DSJxbee38t
EyTxoqlgqD52jdzz5UieOgyGULQSVJzZx+q0rwhfkMBvl4YKHxZ5Zsh1NJR/yrpdX7H57Y12f01K
8N1QfHwvGw6XoQtfxL7XH1e0MPxDp7nmIqmnYNuaySL2sR6AvO6lg8SkJLFkiAtio9LeTdd44Y2z
zF0/j+UBA0dIQ9VlXtj3d7YmzeFhD6e75i+jRr5ji2DVl4ouffr3/z1q7CtewxEIBIJ7DLmlhtRd
HxK0eDnxkYHI9eWkHSrFP3Lw260Fgp5YyD16grLWdjQBwYR4qSgrLgNciDTohA+LPDO0yViLkaLi
SvKz81CHz+86B0Mwarha/Clp2RcoKa0BnIiaGy4WShRSlFdCyPQFIvYF1nzX2kjh3+r5058voX7w
ESZ5OI0qfxnt8n3XiMUSgUAguMdw95vM1oQGUg8dYdnhto6DD2NJHNJ2a4GgC+exE9m8KY60zBxK
qiooqALNOD/ino21vkMufFjkmSFgvllDRtoRCJjM1heEzUcnJspKa5BVHkQtfp4VEVqhEoU8/sJq
EfuCrnzX3MC/Hz4PvhN5a8HEPjr8rv1ltMv3XSNewxEIBF2I13AEAoFAIBAIBALBcHKPvoYjDngV
CAQCgUAgEAgEAoFAIOiGWCwRCAQCgUAgEAgEAoFAIOiGWCwRCAQCgUAgEAgEAoFAIOiGWCwRCATf
KVe/OMKcn+2+a/U11F3js6pmRdc2N1QR+8phPqppdbjs7vc2N10j9pXDfFjVTHOD9d8fVbUOuS3X
L2fz5DMvsWpvIbe/p/7RfLOUnz23icPlDYP6fsj115fws+c2kVV5a1S2//sU38Op6956a6gp5dwo
0aE9m97tnPhd0d0m3XUyVD8YTlsPRZaGykJeWrWemc+sZ8eZb0ZF/3k348CR3HWv5bnvMkaHI08O
Vt/3kp26x19KzqfKfdGOfodq+5HIC/f6OGG08735NZzRdBCMQNAdcUjxKMLSTNq+s5inR/FYgPtd
K1ty8uS5mZMIcJeGs0JK8srA0wVj0Tmu3JxM6A/w5zclSceiuVH4e7qI9gn615vcQMbug5ijVzFD
rxU2HQ30ssmw6WTU2NpC/qEcqt3C2L4xiqDA8aNO56PJz0VM3Bs56N6xU8/48/dypaSxfRTIPTJ5
QcSPWCwRCASCYeTbu162s6s7z8wLA6B5mBb+b9+8xsniBiKXzqf6UBYnS42ERo7/wVnT2U3L00tn
i/YJBtab3AZYhE1H4YSmP5001w9fud9l24yN7fiHT2bGpImjUuejyc9FTNwbOejesVPf+JuwVPe9
zQsifkYWsVgiEAgcoqHyImmZpykqr8FsAV1ACPEJy3g8cAzNN0vZ8HIWhqVhlJy6QFltE7qAMBI2
Ps8MvzHW+2tKyTh8ioLia6h99URFDLwbornpGmt/fYFpMX58/fk3XDbJTHrgATYu1vN5dgHH/+cG
uGh4cUkUzz/o2VH+30nNvkRhlQlzO/j4+vHzuEeJ9nMldc9JTtXLkH2KmL8+QtZyDWt/fZ6H/sWP
vxZf5XobTHpgIi8u/DEPeTj3laehnn/PLiTvf25gRuLHDz3A5sU/JsDVqW/ZcWN6tOOFN84yd/08
FnZsOin/yyVe+LCCyyZrnZuXTEXvoTwlV5de4IrFg7jQUKoDT3Es5wINkePRduuUi0+fIPWTs1Q3
tqMZ50fMs7GsmKXH2UG79tHDHTs/G0pJzkXKbrQSEv4oCWumUpD5ESeLK8HNjxUJq4iN0Ckqv/nm
NxzIPEVBcTlGi4rw6bPZ/EIU6o62VJdf5NX0sxRVNeEfHMqKNc93+ty6lw4Sk5LEvHFGu/53u8XI
gfQjnCyqwIwL4YYZJKyZS7Cbsl059u63GR/1pax7JQvDbD/yc75C0kexb2OITZkdbV9zTSkZh09T
UFwJXuOJiQ4k/2g5ie8mMaXXzqPB2LG5/hsyMo+RX1zZ2f7ENXOZcKf9NuK7ub6EdS9/xLwdvyS2
w+5XvzjCurQaTv2/JId1bYvuejOl7ya3tg0y97CgaD7ZKbP70cMRQmaHUlZwCWMLhERMZsXKOYSO
de3XbkdTYm3qImvXrzgmz2Df649zZ59Zcc5eknNc+G3KNN542SrbEr3Wbk60rQflcW5Lpn3vrkZj
Gbie/nUw32bdtmJh75aeNjm40a/Lzz0H7we9y81OmW3XZ+19zyBy6mtrkym40QZV6TyZF8h7+zei
a7k2YD0D+VifPG3HVxzReXbK7BHN+47krpHMc3d73DIs9Sm0yx9Tf0VGfSj7dsZ29v2lZ/aRfLSd
d95dhelM//4qd9P3Er2HYr921E7DqRfbbV3LBGng+Hv7N7N5+5UjnTnXkZziqO1t5ZP+8kLPOm3n
mAHHSXJ5N3vabp8S/xuoHh831ZDHUPci4swSgUCgmNstRnZu/5Bqz8m88/Z2Dr69kXBVDal7TnBd
tl4jt9ZxMruSRfEJ5OzbRqTbNVL3nKJBhtst10jdvp+ieg8SNq1nRYQHudmXkG087JLbbnH881u8
uHYBf9z6BFz9G6t+fQpzUBiH3ozj5w/Cf3zyJVUWuN3ayBsfnKXK/X4+SHqWT16dw4+dGtj54Zf8
wwI/T5jHHC+JqQvm8If1YR3lm8kpusXy5fP4wy9jCGir4dUPrNf3HCc3k7o/l7w6Z15cMpvfLg5D
vlrK2g++pGGAsgdsU3sbf/r8KvqZ03l/1SNI9d/w8gcXaFD80K+VorxS1AGhhPhpCZ8VjLniIkXd
zlZpqCxkZ2YJMfHr+XjfdhKjvTmW/iEF/Zy/osSufdrQWsfJHCMrkn/J8ffXQvlZ1r28B3NoNPv2
7yQ+HA6kn+CqrKB8uYG0bWnk17uQ+HoS722KRS7KIfl3F5EBLG3kHyokaG4s7+1YRZClnLQ0q0/1
K9cA/od8i4w395Bb70HCplc5uGMtusaLJL15ot+y+hZu+36l8ZFb0ET8xjUkLp5hX2YH2metfz8F
9a7Eb1pP/GPe5B7Kx2QZ2LEcsSNyA2m70sivdWFFQgK718xGLs9nQ2f7HY/vweraEeJTkojxdcGw
ciMfp8weQA8mcs8YiUtM4uN3E/BvKSV5uw272dGFIToUc/kFrty0dLYn/0wNQZHT8FZ1jz07OrOj
B0fi3JZMPtjXd28d2KrbXiwosclg/KBPuXbsZPf7HhM95bre+u42FgV4EDJnDTkfJxGsarJbT3+5
oWeetu0rjup8pPO+Q7l5BPPc3R63DL0+5XYJj54GVSWUdPpgKwWnK9AZpqKuVeavjvj1UGw6VL3Y
ausEyXb8TXR1GlROcbhPs5NP+uQFN5VyW9gbJznQPtvjpIHruT2M/bLYWSIQCL6fyBYiF8QSMmta
R5LXErcgjIK0GswWS8cuAIhcGsvjk6yvhMTM0XMyrQajxYL68jlKGrVsTVnGFC9XiNCjoYHknHab
1U6LeYRp3q7Afcz0lfhH20RefCwALTDN4Me/f32VhrZ2fPiWmU9M5SFDMHpXJ8Cd5U9M4PMjDZgt
7fyoo19y7viTAZzuY+7CqUR3nDPy4uJHKPz1eT6v/TFzux09UnXlMp/XubD1l7N4TOsMjEcf4MIL
uy/wUdUkEgL6KXtA7mPm4ig2T/ECIEADS/Z8TV7tj3k+wNX+U/P6SnLLmwhZGoYWkEKnoVNdIjev
nKdeCLeaqqUBM6AZq8VnrBafhXG8N8mIxsvVYbsi9f/EwPDsfKb4jQFURAa6YmyZzIq54WgBw6wQ
Ms5fwtRiQYft8q9XXqSg3oXEt+OY4ucKjGdzooWCWpdOPRpWLmPNLOu2VfXiMtalGTFZLPS3sXYg
/5MrL5Bf5cLmd+Os/gfEr5xLyZYT5FdFExvgSnO3Abfk1lNX18tt3z9vnLL4MDwby1NTxnc8wWmw
KbO/A+1TX86npEXL1h3LmDLWGl86qY2kQ0ab/qTUjlTlU1DrweZ3VzHDyxUIJSjYg3W/yOJYeRQx
LYOL7/6wp+tY/RjFZTl3uK/UEZv9onIiZmUsj+u1gJYVa+ZT9PJHFFTNIcazr92uFmfZ1MUK/VSC
pEJyS41ERI6nob6MolonViT4ATWd1Rrt5ER7eoiUlce5zoZM9urpTwfXLxcOXHdLg81Y8OllE3mY
/KC3ra+W2vFZi+3v47y6pUkHcqpzR85UKsederrrtzf2fMVeHu+t89sjnPc1DuSuEc1zd3vcMsT6
ghTeD6DRhxHieZrckhoe99PTXF9OQZUTi9YEIrfk24jPwfk1DthJ29t/hqoXG221F3+yAzklxtOB
mOuFvThfM8nFZl9kyxbXy8/ZHScpat84e+Okgcdj14axXxaLJQKB4HuJ89jxxMxypajgLCfLK6mu
raGsog5Ufl3JWuWCv2dXJ6t280Cy1CADxgojeHr3+N4/PBD16QobWUrCRyN1LjKoXe7D2cmza8Cg
ckUCZL7F2UPLXINEYfHfOF5VT1VdA5ev3gInzcC/FqNyYZJX16FYkosnPi7fcrmurcdiSUPdLdBo
0Xd7PUet8WKCC1ytb4MA5QdrSS4uTPNV9ygnQCVTbpJBwWJJdfE5qi0erAj3A8DdK5DIAFdOnr/A
1aWhTJBUaPSPEqO/yM4tyaSN88MQMZl5c6YSLA3Srv3oTTfujqwq1G5OSCrvLrtIHh12sdgt31Rb
CW46/L26BlcTIh5lQoR12y8qF/x9x3RbxHABSxtmuX+5BvI/U20lJksdSS+90ue2K/VNfHomjZS8
rolsTNI2ErqNw+zd76y3r0eph97sy+xI+4wVRqSxfvh3W+TR6YNRY2OxxAE7mmqN4OVHUPf6vQLx
d4Pq2lsYbwwivgfAnq4Z7kGZyoMQX49uPqZD52ahrLaJGM++drOnC+dJ44kJ13LgTBnNkeO5UnQR
2TcUg+8YaOm2WGInJ9rTwzyDA3HuphtQJuMZO/ruRwc2c4w0iJwyAn5gz04mi+3v8UJZe+22w349
/eaG7osldnzF0Tw+0nnfkdw1knnubo9bhlqfI3ZxlnTEGHSknrlIQ3Qg1UUXMHvpMfiOQcPA/trc
Mjx+7YhNh6wXG20d1r7FU3nMORznk2yPE23ZotTeOElp+8bZHycNVE/p6Q/ubr8sFksEAsG9RvPN
cpJ/sZcrboFEGUKZZ3iUuNZCktNruvee1mXzYeM+3Hs9oBjggRfNTdd5dXcu5S5eRD/kx8KHHmR5
WzmvfuLIqarfIrd/C73raB9mZaru65WN78NZUUa+RX5eOdBGyr++QkqP70o5WdrA+ggdzpKW9Sm/
Yl55OQUFF8kvOs2GvNPEv/EaSyZpB2HXPg1A3cvOkjQ4v5EkJ2wfPNi3LlvX2vI/yTWY7Slx+Pfa
/qr21IJ+Ge9Mb+sagAdqocWo+H6l8aGRnBySWfG1ruD4TljldmS4ttl2M7VssQxYrE1bjTgWZNnS
LQ/0sptsX6/hsyYj77pIWX0Y+Z/VEBI9G22viYqixVUbenCWUBzntmQy2tN3Y2kfHdjKMfN8GwaR
U0bAD+Qhft9jYqp1QNeDqae/3DDc/fPdy/uO5uaRynN3e9wy1PoctUvIrBlIeTkU1c6g7EwlQY+t
wkcCsBWfw+TXDuhtOOwwcFuHMac0DuEU/iH2kbZsYbA7TlLYvpZSm3q2Nx77bvvl7wZxZolAIFBM
dVE+ZfJ4du9YzytLZ/P4FD3UKu9YdMHjobGGK41d78Iaq2owD5N8VX+9zOV2Db/dOJvN88KI/mcf
qDP3WXzpscvE0sZX9V0TZLOpniqL1GO3CYDWdwyYGihvut3j2qttMKHz2vsG3sHSo06ZclO3Opsb
ud52H8Ea+71+Q00ZBVVtGBas4uBvt3X+vffGMoJUUJBTSjNw9XIhe49fQqMPZckLy9n/wTYWBUD+
mcpht+tQ/UY9bjy0GKmu7+qgr35xhJ+9vI9rluFbpdL4eiNZ6jDhgo+XFh8vLWr5GhmZ2ZTUt+Lu
NZ6ISfrOP59egwF794+0Hu3Gl68ObtZQ3dItviorhi2+NIE6qO8Zv+b6SqpbwN93jP34VlkPJDXJ
7d2+b+h3XGZP14NYnbQ9jrU0UVLb1LNdFtceu00c0QV0bJF3a+JYXj4lN12IMfg5nBPt6cGROLcl
02D0batuZbGgsju3GJwfdJVrz05K7KikvUONneHoPx3V+Xedr+5Wnrvb45ah1ufo/VrfEAy+7ZzM
O0dJfVdMK/XX/5+9cw+rqtoa/i9lb26bgA0qWy5CAilKAipGYQod0dLMLMuoT60IL5EVdsy+DN9Q
v7Q6mEaWphm+SZ00NdNSPIEmHRIVMBQNMBBRELm6NyB7U31/gMhlX8Erzt/z+Dyy11pzjjnGHGPO
NdZcc3WlX1/P+aO+tl7NeUBXbN9VP9dnC2PnSV0dO/XVU9+n11Uel28NbsuVJS88GMhEu45NP6+s
YXfOab4vVnX542oeCgWP9/2LT46cpxZY8si9aH7P4Z3ci0Zdb+r5nZVLIDAFqbUl1BWQdewMTt62
5GQlE7ctDyR9UBuRUe/nH0qo+2Hilq9H9exYpGcPs/bLHJB4XBX5zC2lUF9GRn4lfd0tyT5xjGU/
lYCZLepGwEqKgyVknCjkiKcM7zuBxj/Z+00yNvXDCbJUkfB9Bjh7EdbHClq5n7vnYILkecR+mkLF
I0Po21hBwvcZKOX9mOxuA5KGtmXrWW2pblSzc2sGY2bdT9/GMuI3/QqegwlzaVoWeTzlJ3JwZUqI
d4dr8/elUSlxIXq8D/3sWy3ZdnHgifuTifvlADllQbhxkd2b9qCSmhEe6IqqIIv0Mg2eYXLT7Wp9
bfuNwnsYoc57iI/fjGxmKNKyAr5Ym4YscDp9JFdvmFJ4P0Co8wHilqyh8tnx+PXSsGXDRtJrvZlh
L+ny9eou+keXbyL8Qwm0fo9lyzcS+VRos38dBfpclfL7DQolsHcay5asp/KZsThpzpD45S5UvYcw
0dsBBfr928baCU872L1hGz7PhaI+e4S1ewpA4topW2Wm/ES+Dj9p2wEtkVtBVuZRMgc54O+h5QmY
ppHkNeuR1U4i0LqCxC93gXsQoc62UF1ssi7g8rJxBxZuO4DcKww/LXsAGIqJhvQgrTbez/XJZFDf
WiYMUj0xxnBMaWsTT7ur5LPtbW1En9Vrx+ozRrW3q75DdWmXx09TdS67xnH/Zolz13ve0tX6TL5e
aktoiAc7NhxA7hWKX/M8Qn9/rb8q/fp6zh/1tfWqzgNqO297w+OC/oSCPlsovD2MmicZbJ/akH50
z8d8fTwIdf6l03OoW5Uef//1121506e+pOTb7NOsO1rAuqMFJPx+juoeNkwfMZiITjhfW+7A38uZ
wTZXOm9BeQ0FdcY/ITX1/M7KJRCYglfgJKLCXEhc8T6TI5aSmKoh+p1pOFFPzgUjEntSB6LeiCK0
t4b45R8Rn1RK6LP3ttmwrCt4+w7ntfscSEjYwUNvb2Njxp8siHoABWqOVdYD5oy6/y4a8o/z1jdH
m1PGUoICFRz5z8/885tj2HgO4dNZw3FoH/clNix4eRwT+jTwccKu5nMH8OnL9zdvHKulbJ33bjJG
DexJ7Ip/8+h7KZTIvVg5fVDL5zyzUpJI3HNcS+CqYHdqMU6BI/Gzbx+nJAROGIlMc54d6cUoBoey
JDKInG0bmTZ7IfM3HMDvqVksGHvX1bdrV/uN1IGoha8Ran+e2Df/H6+u2I40cBIxzw27um90Ndfz
xCAzEtfEM2fReorshrAkdpqWz4Safv211qPBZKHUiejYWfhJS4lbsoL4pFKCw3ww7TUm/e2PfieK
cc71rF2xgoVrkpENGsmH74Q3LYU25N9SByKjw/GkgIWLVvBFSg0zZoaidUGVEbZK35NE4h5jnn5a
ETx2GOrjycSu2aP9FIklgSHeZG3b2NyusXz49iQcpJ3URTM+IfciB/zGDsOmMzHRgB5M8XO9MnXC
N/TVbdgXjLBJp+RqV64RfdYYOxpqb5d9x9j4paevmKrzGx2vrlecu97zlq7W15nrPQPvxQnwGzu0
5bO6xvbXLvXr6zl/1NPWazYPMHXO2kU/12sLY+dJV2meo60e866WfYtyx8P/m/R3Twsr7rjjjptS
wO8ev8+o8x799r9Gl/nCg4GM/LOUl/YVtXlYIpFY8fqDgxn8VyXPJOV3KSkx+YGhTOxRwkv7zt5E
KzhuVrm6N8b24ZuC9cPhiS23jW2UF8/w/Ds/M+HliUx3txGdVXBL01BVSlZhHT7+d7XcBB/f8ynz
v9Gw+pNZ9JN2r8mMsvgwcbtg0cxhXSun6jhzZm9kXOx8nvF2EB1JIBBx7paiIvcn5iw/woIPXsPf
XiLaKrg52fIEvHDoqt/XX2vMin9OwuWBsfS0sLxpEybXC42mnowaNQGOV9bPSySWPDLYjQf72OJi
bQZ/NpJx5izrfjvHWc3fALz3SCBlJ85gfZczg63gdN0deNlIgH4kPq7g/T2ZjAsZ3va1mh49CfZ0
ZaKrnLvtLKiqVfLt0VN8X9K0RKv9azhLHrmX2hMF1PZ1YmQva6qUNRz8o4Sv8ytbkh6GZJ02eiiP
O0jbyJWq+gt/j35Mu9uRu6ylnFfW8P3RP/j+fL1waoFAILiFUNcWE7c8Ac8npxMZ7IG6LJf4L4/j
Fjwdp254A5GelIXP/Y8JwwsEIs512zinj4baUtIzC0jeloTMbxI+3Th5cDu1VXBzYZb/1Rp6SKX0
DQqlp7nFbZ4wMeMuKynqhsrmv3vySOBAnpb/xfe/nWLdpT9x6dOHqV79mN1Qy8Jj1c3n9WDkkH5k
F5by1TkNRSUXGe43kBGU8/8OnqVA9Sfj2tRzB6H+g3nF3Zxf887wfk4jAXc5E3HfYCT7j7K1XPsW
kfcO6U924WneOpxLbxdnIoYMwKVHDu/kVhsl67fpOVgHDW4j14jBA/m/d9tTfKGM1ceq6NO3LxHB
vtinZrNRJEwEAoHglsHGZRgxURXEfZnItE31ILmT4JApRD83DPNu2N4Hn48QRhcIRJzr1nFOH6qq
YtbGJ4L7MGKe797tv53aKrjJsgPffP0VTz4dTg8zKU7Dg2+bhImkp5TeVuYtqzKsLcwZ6eHKODsz
MrLLm86RmOPSU0PybwVsPN2093HmeSX2chtCHe/EmuqW66sqzvHukcuv9dyBm+Yv6NHAWVVDh81i
ra3sedzdmuzfT/LusabEzMHyWqQPDOBuJ2vQkSw5f6GYd480vT6Tm5uPxsKS1+92xqOghmKMkLWu
nvOt5JJa2THV05bf//idtzIrmuQsrqaqpy9Thziz+z/5lP0lnETQjSddd7qy+V/PCEUIug2Dgsey
PnisUIQpccB+EP/79XKhCIFAxLlbCgeXYfzv18NEWwWCa5ksGT9+PF+sX8dzERH0lErp7XcvPaTS
bp8wkdn15sOHenf4/Y9zxXyS37RiRKOpY9XP2U0JDnNznG2s8bC7E39rM7jUA0kPoDmZUFZTa/Qe
IHY2d9KbRnafU7b8ptHU8cFPGXqvKzhX3aaO4vNK8HLE28qMghrjZb2MtY0dLj3/4qszrb/+8yfH
zqiQDpPhbNGTsro/hZcIBAKBQCAQCAQCgeC2wgxgypQp1F+6xJyX59Jjzls4+g6lh6R7J0xUtVWs
gcLqeAAAIABJREFUP3ae2uZcgFqj5qyylrKGv9uc5+3izCv+rrhIm7INxdXK5q8u9WhzXm2t8R8b
lkqkSGmkSm3aso3aS22/jqPRNKCmB30kPUyS9TLWFlKkmDF91FCmdzjaiItFDzJFskQgEAgEAoFA
IBAIBLcZZpZWVz6k3nCpnqz4JQx/Yzl2XgO5o2f3/cSs5lItB4sr9a4GsbPtxesj+lF7pph/5pSQ
q9IAPZk22p/Qnu1ONiHvUXvpEiruxL5nD+DPVvXJ6I2G3Brtr+HYW7S1h8TcEil/cV7zl2myNqO+
pEaNmu8P5nNA2fHD21VKjfAQgUAgEAgEAoFAIBDcdvSw6tUHr/BZDIyYh//cRfjO/Cc9peb8/adY
UWBvZ08f1HzfknxoSlB42xhOIjWdrT1LUVt3keo/zRjhat3KEhKeHuHDKz5ynWV6uMixa/mrJwHu
dqgv1XJM2Wi0rK3lqlZepOxPM5wt/qKgpq7ln10vJ6b5OGHf8w7hIYJrzumDiYz/P+/dkLqVVcf5
P1PfYFNuxW1R/+bFb/BYzJ6WvyuKj3Ogk3UbuvZG6bYrbVKWNcm8Obfmusn7wtSXGfNC3C1fh6mU
HNvGmMdn89Tin7tg6yz+Oe8tRj0+m6fmfUperUbrb6a2/9roq46DKWmcVnfPON7a3w35kbIsq+l4
Qc119/GbSmfXIN7cyPH0VpbNVNt0pQ/f6HnHzSrLzTIP6K7xRtCFZMmfymru6NmTXr5D6RMQRK97
ApE596OHmfgkU61SiQopj/goGCyXMaKfgteDB+Ar7YGkpxlSfdfWarC2kzPVsxfOkjvaJUtq+OqP
Wnzv9ub1wQqCXfowN2gQ42z+YvfvlbqTNw59+fDBgTzioeD10UOI6GvBwZwznP3rb6NlbS2Xnaaa
r07Xcu8QH5YE3UWoiwOT7/Hm9SFO2P1ZS5nmb+Ehgm6NVOrEExNC8bGzvP3qV1ew9r2N7O7MJMCI
a29I27rSphuEzFqCzPpO4YwmoyF1w2bSCyuROXvg5+2FXIKW3yQm6/iq20RdwUcL3mHhmj1Uarrn
is3r5u+3oI8LBDfTvONmleWmjBEi3ggAs1fmzmXNtzvoM/R+zCytuKNHD6GVZsoqS/kgw5wIn74s
dXWhSqkk+fdc3sKJRf5WejZA/ZtjBeco7tufiUM8qKq82OF46m85aOr6Me1uV0bebUaVsobVqb+z
p7JBpzy//3GaAis5U4f0o7q6hoSDuXxfrDJJ1vZybc08hkbpwVRPOa/0dUKtvsTB3/NYl3PB6A1r
BYJbFXNrBx59duxtWz9ortm1N65tt9bN6Mr1ccIRO0UdRdX1gCUzXpvJFA9boEbLb6br+GrbpEGj
oehCHWDZba3R2t+VZcLHBYKbd9y/OWW5eWOEiDe3fbLktVdf5V9xcdQU/I5UNpye5t3/y9Xrf0pn
vVFn/k1mQSEvFRS2+/0iU05f+Wv+979qSbRc4LXvL7T8vbXDOX9yMP8PDub/obXmhVrKrK1V8knm
WT7pgqzt5QL0yiEQtKei4DDxG/aQnluMSgNO7j5ERk3jQQ9blFXHeXXuZgKfHULWrl/JOXsRJ/ch
RL32NCNdmm5cKoqPs3bTLlIzzyBz9ibUX/8qtobaUr5Yk8iO9DxUWOIXOJKomRPwspYYVZ+y+Dhr
N+0hNbMAersyLsyD5H/nEr1qPj7kMmf2RsbFzmdir1KDZemTxaCsZceZM28zgWNdSN55BKl3KOte
8zGpfn1tGWFv2mrAj958j91n62HDCh5Ln8S22LEdJgiZe7YT983PFFU3Iu/lwrinpjAjxJu17a7d
GOWit23SbR+xRT2SdW8/iE1z6Zk7P2LhTkvWrYpArtGnV91ymBvRJmXZH6zdsIXkzIKWsqNnTqCf
tW595acnMTsujZwL4OM3jOioKXjZS4zqAx10mLKT+H8fIP9CPUg61v/C1JcpsvZg7/poKgrSiHh9
I9JBoUzsVUriLzmorfsw8dlwAjlK/JdplNZKCAybxILng6DqOHMi4lG5jyTcv44te45SyZ2EPjaF
6Ml+6BrNlVV/sDb+K3ZnFYOVnMCQsUQ/+wAOOpZLnj72M3Frd5F19iJghpvXIKKipjHCxYqGqlwi
Zn9EZe9hRI6GLbuOUlQLgfePZ8HMB1vKVJblEh+fSPLx88jdfZh4v+HEgT4535n1DskX6gGIf30B
u++fhnPuZva3+211dBBzWun4sg23fL6ZLem5VNaBm9cQoqKmMKLZz15od74+OYxpf3zMe6RXNwLn
eXXaXCbOX8S8EU5dirWX5fpiwy5SM3Mp1Ujwu38sC54PRWEt0XtMfx/W52+6j6mrjl+JZXaG/cjY
GM818HF99W1e/j+djlXaYvwMu+OsLRvEumVTcGgu73jKOhb+u5Glb480qCdDbdM3nv4Y9z866/5w
1Sz6SW+esV6b7v4dO8XAmJrFnLlfMfHd/9uSGD19MJE58cXs+t/5BscOQ/51rfqwsrWvGDHut8ZQ
/5Se1WMzA3OQZ7wd9Pa3rupbW3zXGb/0yWGg72mLEfrsczwlgVfjc4h8dz5TvB1QVuWy8PWPUAdO
5+7cze3KCjWpjYLuQQ8bGxvuGTKEyhO/8ae6gb//Fq9eCAQC3YmLZUsSKLIbxocfLGHjB6/hJykm
bsV2SprfxVfXnWfHtgKeiIxi57pFBFufIW7FLirU0FB7hrgl60kvu5OoN15mhv+d7N52FLWuxL26
hrWLV7C77E6i3vgnG9+dhVP1YeYv3k6FUfWVsmzJelLLrIh842UiR/dh95fJOpfC6yvLoCxGyro7
9SKRr80k+smRJtVvalsMERk7n3HOlgQ+9xpfx47VMlFOY9mGLMZFvszX65YQHdaHLWsSSC2u03qt
vrYFhg1Clfsr+VWaFrsmpxTjGRyEAv160yeHwTapK4hfHk/yWUtmREXx3syxqHOTebWVTTrYQHOR
5J1ZeE4I58P5k5CePcz8JZuNtnFrSnJ/ZmF8EkU4MTFsJIHOErJ+SWLhmjQa9Nim9HgyO85KCA3x
gerzbIlfwcI1WXgGDsFJUkfqrkTWHixtOb+y8ADxOwtwG+yNrK6S3ZvWsCxFewK8QV1K3Jvx7Mgq
Ru7lhZt1Pam7vmK+DpmUVbksW76ZrLN1+PgNwc/ZiqK8o8RtaHu+6uyvrE06j9/9w/CUaEjft4X4
X5plUFcQv+RTdh8/D1ZyZJoC1m46gr7tOwzJGRjog1PzfYjbIB8C/fsQpOW3jhPYGr5YvoK1+3JQ
cSeezlYU5R0hdslG8rR81c5Yfelrv88gb2RNz6fwGTQEn96WXY+16griF8WTXGZJ9NvzWf3GFNTp
O1n4+WEa9B7rvL+Z4ot6/cjEGH9VfdxAfV2JVdrioF9YEBRmkdWiozpS9+ThFHgvrhJD8UZ/2wyN
p/rqNpQoue5jvbYxxMS+YcoYZlT7rlEfNmne0Q59/VOuMc5mOucgnRgvjdV3x0YbiF8G5NCns44x
Qr99BoVM4olBZnyxZicltTXs3pBIvvUQFjw7hNntyjKpjYJug1nomDFkHzuO+2PDQOznKRAI9I7q
GoIfm4JPSFDzExMHwh8bQmp8MSqNpvmGAIKfncKDg10BGDfemx3xxZRqNMiOHSCr2oGY2GmM6G0F
/t7IqWDhzkat1ZXk/kpyoSULVoU3nQ9EPjeBrDe3k1wYxrhehupLJqvWgZh3pzHCvqk+J2k9878s
1dlEXWWpC/TLEqw2IGvz09bAp6bw0AjX5hvRCqPr70xb9GHefFMpBa1PRNS1FagAub0DCnsHFJPD
WT24FHlvK8ypb3Pt5XmUrrY5ed+LpzSN3cdL8Q92paIsh/SzZsyIcjFo42C1bjkMten08WRSz97J
glUvMLK3FTAIT687mfP6ZrbkhjJzsIO2YZHgmS8wL+Suppvu3hDx5i6SC8cbtPEU77ZPAlVlxagA
p94uhIaNxefZseTkViB3d9H7FEpq5UHMGy8wyPoiqsylJF+oJ3jmCywKuYsD1hUs3JZHUV4FeF++
Qk7MB2/xoIsVJbk/EfHmFtK3HaDk/rtQtLspKspMJvlCPZ6jp/HhzGFINRUse/M9Un9JJufZYfi3
e2oqlToQ/vwUKq08eHSEK8qyLCJmr0F1oZhKNVzZkvxOohZG8ZCLFZm9K3h1Qw6luZUQchcluYdJ
PVuPzHkoq9+dTj9r+PGj91i2r1inDgzJ+dDzU8g/nsOWQgnhz03jIQ9bCHHo+FuHmHKYHccvInO+
l3UfTEchreO7jzaSrnFAVauBdk+CDcnhY0T7Q5+aRPIvx8mqdSDyjRfwt5Z0OdaWFBwmtcyS6A/C
GeFiBbiyIFpD6llLzuTqO9Z5f1Pn6vHFWuP9aJyd8TG+vU911ccN1TexC7FKW4xvUIOP3R52ZxXz
oIs3yrJcUgvNeGKmB1CsV0+BtfrbNq5W/3gq9x6ip+6ba6xHyxhScmyPUfrW2YRaff21woj2XZs+
bMq8w0HaNlboG0tRXzTKZrrGaUO+FN67C/rWEod1xahThuRw1q+zQe1ihDH2CY+cQvrr61kYd57S
4/VExj7WtHpL3basShPaKOhGyZIzlo70f+pF5D5+9DS34I47RMbkZkTbazkCwfXG3N6VcSFWpKf+
zI7cAorOFpOTdx4kLleeEksscbO7MnDIrO9EqilGDZTmlYJdnzbH3fw8kO3J01pf5dkCKjXnmT97
Xodj+WUXoZfh+qT2LrhZW7WabHghQ0eCQU9ZhmTxqTUgqx1IJZY49dIzqF7NtnQRufcDjPM+zLI3
FxLfy4VA/2FMHH8vXtJW2ZHWN9V62mZu7cQ4Pwe+SMlBGexKfvph1M6DCHS2pTRFv94mBuqRwwCV
Z0uhtwuerXXa2wM3ayg6WwNakiVSqzsJdHdoe76kjvyyesM2bjcpdvIeho/VYXKOH+DV1w8gtZIT
GPgAM9xd9MottZcjt5aA1Ay5NXDBEs9eTWXLna2aJ6YaoGlWKOvlimfzZE3u7IGbxIz8qvNUajQo
2k22K/Oa+kv+vo1M2Lex1ZGLlNbWgX27m1NrB/z8PEj95TBvxXxF1vECVICstr5NN5BKHHBrTrTI
7Jo2R1U1r9RQXTiDCvD08sOpOVHgE+gBepIlhuXsXL9WlTXJ7+bujVwKYMWjL8/i0U7K4WNtuP3X
ItZWni0Aayfcel+xbz//B+jnD8f3fKr3WGf9rUFPTFDWGu9HrT7rZzjGG7jRNNXHDdVn7t35WKUt
xptLnRgX6ERcymEqwjwoSv8VVW9vAp1tobpYr548q/W3rfSC/vFUb9032VivbQwx2DfsujCGSQ23
73r1YX16NGUsNZfaGm6TnnHaoC/17oK+tcztdMWozJ0H9MvhbJrOjLGPjYsfUc8O4tUNR/EZP5Nx
3g5dbqOgGyVL7p7yPNwBZuaW3GFmJjQiEAh0cvldznxrD0IDBzEx8AHC69JYuKb1TY8EruLAIbXy
YklsOG7tnsbK7Byg9rj++qzAtC916pddnyxFKQZkrW6SVS4161z9Jreli4kxqQMvx/4PE3NzSU09
THL6Hl5N2kPkO2/xjLd22XW3TYJfyDDUyw+TUzaE5H3F+ISNxUEKpQb0ai5FtxyDHfQ3orMKk0ja
z+K5nHPQa+N22PQexHv/ms/uncnsTj9K/oVKUvdtJ+v4GVavitC5FF4qsWruBpIrCRHrJt1K6ahj
tUaDWqPhspAtE2NtKlE3Pdn1Gf0EUWM92tjIqXfHSb2yLIv589aTUwc+fkOY+IwHyZuSUbVXkbUl
sss6aq+/5j/Vda2WKhuIEYbl7OLnVjVtFNiiO5PlqD1vuP3XINZKpWbo2nhQ3zG66G+6jk10Ns2P
jI7xhlBf5TEFOh2rdMV4n5CRSJN2kn52JDkpBXiOfgGFFJSG9HQVAr6uum/GsV6b7vTru6KDL6s1
mha16RvDJjpXGNG+69SHTdKj7rHUWJvpHKfVpsdOY/XdfqzWG6PUXGWdGWMfDUXNX7wpPZ5DpdpP
q5+Y0kZB96GH1OZOpLI76SGRiFUlAoFAL0XpyeSoXXnv3ZeZ9+xYHhzhDWeN/6Sak5crVBeTX33l
pqm0sOlVBW3Infsg1ZynEksUvR1Q9HZApj7D2g3byCoz/I6ok7MTVBVTVNuqvoI8nfXpw5AsXZX1
eral9YRD17zk9LE0Ptp6FLn3IJ55fjrrP13EE+6QnFJg8Fqt+vMego/1RbYkJZNVZcm4QBej9GpY
Dt1tkns4QVnb/qYqK6CoFtx0PV3V1JN/4coXzFRV5ymtleDZ29JkG5/OTOOLbQeQ+o9l/adx7Pzk
NXyszFBXFzetjrhKqKsLSL480Tt2hCJNI1J7F+RabtqdvPsAUHnhIm7ed+HpLGHHv3exIzVXqz3z
038lp64Rv/Ev8MnbEYQHe3VMNhhA1tsDGVB5NpfK5kqKMov193cT5TRZloLDFNVqgBo+ilnIqMff
YNOximsjh8T0GxJDsVbWyxVqSykqu2KI0wcT+T9z11Fj31fnsfo+vTrtbyb5oh4/6nqM77yPG1Nf
Z2OVLhycfQh0bmRH0gGyyq6UZzDeGGibMeOp3rpvorG+U+O/pGlD4kp1Y6s6Klpik77+alT7rmkf
7jy6+mdXbWbQl7qg7w5xWE/8uuTay/RxW1+MMMI+pzN3sjb9IuGvPY1TWRrxO49rLcv0+YigOyCW
kggEAqORWltCXQFZx87g5G1LTlYycdvyQNIHtRE3Af38Qwl1P0zc8vWonh2L9Oxh1n6ZAxLt71Ar
vB8g1PkAcUvWUPnsePx6adiyYSPptd7MsJcYvPFw8g8l0Po9li3fSORToc31HQX6mNx2Q7IoehuQ
tYvf4jamLcdTfiIHV6aEeBthTEvkVpCVeZTMQQ74e7R78sNFdm/ag0pqRnigK6qCLNLLNHiGyTtc
62ltuLqmJeEOLNx2ALlXGH7Nr40Y0qu0Wo8chto0KJTA3mksW7KeymfG4qQ5Q+KXu1D1HsJEHcts
1Zp6dm/YSahzOE7qAtbGb4ZBoYR62GKjNmDjDpSyO+kAqpSjpN8/BFldMTl1jcjdvdu8TtV16klc
8g7JznJKz1YCEPrYSK1ft3HzDyXQ7jDpx5OYOjcPNyrIOXsRN6kPMi3ny+wsm5MmyWx2riArKanp
Cbu6rmk1izG+4z6MUPdd7Cg8wvwljXhKKkjO0p8sMVVOo/3YfRjjvJLYkpdDxLQ3cLLTUFrdiMzO
h0CPO02Xwwi/NkeC3FqCuvo8C99cysTnZjFzhBOZKT+Rr8NfDcVahfcwQp33EB+/GdnMUKRlBXyx
Ng1Z4HR8fTwIdf6PnmO/dMrfpOTp8cV6o/2IMhNi/FX2cWPq62ys0tkXpLaEhniwY8MB5F6h+LlY
GRlv9LdNgRHjqZ66u9L/rvZY35kx10bihKcd7N6wDZ/nQlGfPcLaPQUgcTU4hhnTvmvWh7uIrv7Z
ZZsZ8CUb6LS+O9pWd/wKGOJBYO903T5dW2ra3MaAfRpqzxAfn4xbyHRmBA8jpzaX+Rs281OgCw+6
tC3LyUAbTZqDCW4ZeggVCAQCY/EKnERUmAuJK95ncsRSElM1RL8zDSfqyWn1BEb3IOZA1BtRhPbW
EL/8I+KTSgl99t6Wjce0nr/wNZ4YZEbimnjmLFpPkd0QlsRO0/vp19aTiujYWfhJS4lbsoL4pFKC
w3wAiek3XIZk6aKsV6MtWSlJJO45bmSJVgSPHYb6eDKxa/Z0nMwMDmVJZBA52zYybfZC5m84gN9T
s1gw9i6D1+rCJ+Re5IDf2GEtnz00pDf9chhok9SB6HeiGOdcz9oVK1i4JhnZoJF8+E64zqXoUis5
wX4Slr25kKmvr6e09728Fx3aJK+JNu7n/xjvvTYJn96Quu8AuzNL8QkcyZKFk4xaCm8sMjsfop65
F6ouIrWSM+65mUSHuGrvR9auxLz7GhP9PKCsgJyzGvzun8SSqAeu2KS9z4/2ggt5xG9IQu19L6HO
lqjrzpNv7FNTqS1RC6OY6OdC6fGj5FywJDIyDLm+/m6inMb7sS2Rb79G+P1eyCT1lFaD26ChxLwz
TetnPq+KHFIHJj4WhJOkaa+Zy0mm9D1JJO4p6Fysbe6LofbniX3z//Hqiu1IAycR89wwzI041hl/
M8UX9fpRl2J8F33cyPo6E6v04Rl4L06A39ihOJgQb/S2zcjxVFfdXep/V3us7+SYGxkdjicFLFy0
gi9SapgxM7R5LyL9Y5gx7bt2fbjraOufV8NmhvpbZ/Wty7a6YpSp47ahGKHPPsmff0UWHkQ9OQRz
wD/kMcY5XyQ+PokKdduyDLXRtDmY4FbhjolbfrmpvxX83eP3GXXeo9/+V1hTcEv34ZuC9cPhiS3d
RvcNVaVkFdbh439Xy4Ti+J5Pmf+NhtWfzKKfVCLaIrhlUVYdZ05EPJW9hrB61SyDnwMV3GT2Kz5M
3C5YNHOYUEY3pyL3J+YsP8KCD17r8MWpG1W36H8CgeC6suUJeOHQLXdf321ew7mlbkgFAsF1QV1b
TNzyBDyfnE5ksAfqslzivzyOW/B0nG6x5EJ3aotAIID0pCx87n9MKKIb01BbSnpmAcnbkpD5TcLn
OiZKDNUt+p9AIBAYRuxZIhAIui02LsOIiaog7stEpm2qB8mdBIdMIfq5YZiLtggEghvIg89HCCV0
c1RVxayNTwT3YcQ8f31jtaG6Rf8TCAQCw3Sb13AEAsFVoJu9hiMQCAQCgUAgEAhuMLfoazhig1eB
QCAQCAQCgUAgEAgEglaI13AEAkFbtjwhdCAQCAQCgUAgEAhua0SyRCAQXMHI5XECgUAgEAgEAoFA
0J0Rr+EIBAKBQCAQCAQCgUAgELRCJEsEAoFAIBAIBAKBQCAQCFohkiUCgUAgEAgEAoFAIBAIBK0Q
yRKBQCAQCAQCgUAgEAgEglaIZIlAIBAIBAKBQCAQCAQCQStEsuQ60aCqpEIt9CAQCAQCgUAgEAgE
AsHNzm2ZLJn96KOM+sfD7f49yqaj500qpyL/B56a8hp5Kv1ZkAb1GWJfXkBqUaVJ1wma9VdXwtzX
/8VXRcoulXNZ71frPIFAIBAIBAKBQCAQdE/Mbs9mS5n41nJmDOnd5leZXH5tqlOrUYnEyA1H5jSU
6PkuRp23YP5dQmECgUAgEAgEAoFAcJtyWyZLpIBMbo+DjuTI6UM/ELd6E1lnqpC73k34nCimDO9P
Rf4PvLpoP56uVaQereXJlx9puaZBdYq4eTEU9X+G9+Y/jE2r8r5YtJisqjKyXn4Z1bI4xlkD6lp2
rFtG6p5fUUl7My4imqhH7sEcKMnZT9zKDaSfKkPu6kvkq9E8NKRPR0E1Sr5K3MpnqfmosGCwrz8L
IsbgbSWhMDudZYkpZJSokCtcmB4+kad9FZw79V9mr8rj/XfD8baS0FBXwj/fTCRobiRhkhPMWpWN
t0LF/pOXeHFeJKPII25zGhmnypE5uhMVMZkJA+w5d+o3liXs5deiauQKd6KmN/2ujcKT6VrL0CUj
QGH2f1mWeIBj5Y0MHjEQpeZKeabU3RpV6RHi3tvLvzev0GtnVekRljWfd9nmgUOkpB46iUptTfC0
KKIfH4a5iB8CgUAgEAgEAoFA0C0Re5a0Q1mURuySTTiFRfL1NxuInnAXiUsW82N+0ys0qvPZqDyf
YeOGOMZ63Nn0m+oM8W8upsh1SodECcCMd97Gz7430R99xDPNSQ91bTE56nv4cNOXvDcniNTV8WSV
qlBW/kbsorXIhj/D199sIGpCH9bGLOZgqapjEiI7hYRsMz5dGcNPHzyPd80J4lMKUZac4K1PUlAE
P8T2ldEsCFGQ8EkiO414jUVZXojSLYRv3o0kzLaUt1btxSYghG9Wz2dBiAVxn2wlsySPhat+xMY3
hO0ro4kOsSd+VSJp5fVayjuhvYw/snXKqCw5wVvr0nAPm8w3HzxPEBfIq7nUVF5NgdF1d8XObZIs
57MpdX2YdZs2s+7dSWRtXEu6FnsIBAKBQCAQCAQCgUAkS25Z1KhJnPdcmz1LXvkwDYD8Q3tRuf2D
qKdHoZD3YeTjMwkfCLv3/dF0scSFJyYPReHUB2sJoK7ii0UxpKqHsmT+pA6JEl1IJS7MmPYP+snl
+Nz/MJ5yNfmVtRQd+oFS+b1ETRuDQt6HBx+fQahTFTsOFXcsw8oCdU0pW1OzKdHYseDteawa70Vu
dgYqhT/R4++hr609o8MeYnp/2Hmw1LBgEkeeDvOir6M95aeyqXD0JTrsHvpa2TB6/GQ+nTcR9alM
ztkOJHpSAH1t7QkLG0OYo4qt2eUdEzontZehyv9Np4yFp7JROfryUogXfW0VTJ3yMINtLZoTRIeM
rlsfBu3cWs/WdzFx7FBspCB388VNqqaoslZED4FAIBAIBAKBQCDopty2e5aM++diZrR6tUUqa3qN
o/JMFbI+QUhbnSt3skdVWtVynlx65ai6towi9V1QeoT0okoe8jRy3xOZNXKZ9HIVSAGVpqn+ylM/
M/nhH9uc7nemqkMRfQeE8P50Cz7btZdnE7chU7gTHTEZaYkKmePAVm2Q4OAoQ1l+eWVJo06xzK1k
OEiauoWqRIm5lQsyyeWjlni7WbLvoJLKomweevFQm2sDSjquttBVRmGKbhkr6qqQ2XpeOWZlgcKq
SaaKEuPr1ochO7ftLhIumwqpFKkU0IjgIRAIBAKBQCAQCAQiWdKtUiUgd+qDwqnjPiByVxmqfcWo
oXlPChWlZ6qQ9ZcBHW+kpfZ3E/OvtylaF8MXKzcT+K+ZOEiNl6ND/X2scRo4hXUfPdeySkVZeR5k
HffkUJaXY9Pfn0/ffYCGuiq2JiYSn3CApcEWqA6Wt2pDPSUlKmzcLDGXNIKmkYbmMtQaFSV12pMn
DgobGrLLUWnAXAJolOxMyqbR2hxF/5F8+XbYFRlrqsBKZnQZ9XbmqIq0y2jjaNH2mOYSFc2itBL0
AAAgAElEQVQyOjhaGF23Pky2s4gVAoFAIBAIBAKBQHDbIPYsaYfn8H8gLfoP8d/up6SykgPfbmBL
jobQ0XfrTnpIZYRGROFU+h/i95zUdgIyqYb8M2UoDXwUx234w8gu169SkXdoOxHPRPGFls8aF2Yf
YNayb9hXVAVWFjhYWWBuZYe3rz/Skkzikn7jXI2SfUl7+epUI2NGuCC1tUdGOVsPFlJRU0XS5mRO
a7QnSxQD/OlbfoL4pN+oqFOSlrqXz1Ly6Oc7FNnl8uvqyc3+L8++vprPTlYbXYan7xCdMnoHBOJQ
nsnHSSc4V3OBrZuTyGjes8TdN1Bv3XmHDpNnxH4inbGzQCAQCAQCgUAgEAhuD8yECtpi4zaKJQtr
iVu9lqmfqHDqP4DwhbE86iOnIl/3debyAURGBDF/9RoODl/MCKcrKx3MpX0IHu5C3NI3UL8VR6Sr
nvqdhhETO4O4Dzcw9ZPlSK17My7iDSKHd7zIN/ghXiraSuziOFQaM7wG+BITMRwbR0ven32JZYk/
MinxEgo3F6bPnsbj/W0AC6Kn+BO7OZFHEy0YFRLEGEWmdlkcvYiZG8KyhB95aLMKucKT6NkT8Xe1
Z+ncepYl7GVS4makVnZMmPIkL/n2Mr6Mu+x5f7ZGh4wDWTK7ntjEH3hy8yUGB/hyr6Oqpbylc8fo
rPuLD5fD1MUsfWTANbGzQCAQCAQCgUAgEAi6P3dM3PLL3zezgN89fp+wksBoTv+yht3Sh5mpJblU
kfMDcxbt59+blwtFCQQCgUAgEAgEAsFNxqPf/vemkUW8hiPoVuQX9WHcwD5ajqgpPXMS5C5CSQKB
QCAQCAQCgUAg0ItIlgi6FQ8+PYl+so7bsR78ajFz3k/DL2yUUJJAIBAIBAKBQCAQCPQi9iwR3BaM
eHox+58WehAIBAKBQCAQCAQCgWHEyhKBQCAQCAQCgUAgEAgEglaIZIlAIBAIBAKBQCAQCAQCQStE
skQgEAgEAoFAIBAIBAKBoBUiWSIQCAQCgUAgEAgEAoFA0AqRLBEIBAKBQCAQCAQCgUAgaMVtmSxp
UFVSoRbG75Tu6pRUaITdBQKBQCAQCAQCgUDQfbntkiUN6jPEvryA1KJKACryf+CpKa+Rp7o57qIr
itJ59JU1AJw79V8efSWhw+9XC1PLb9BcYOHiz9lXorzl7S64zmiUJCX9wNxlHzPuxbcJnPE2oa+s
5K2En8mt0dzyzYuLWU7oK5uup0LZuW4lwS+uJK2mXudZ77y5lNDXvxF6E1xzkhLWEDjjHeJPVuk4
Q0lczFKCX1zJkTqNUJiIHSJ2CLqEsvwEU158m8AZS0nQGXeuva/cXH6xlNDXN1EoQqxAcNUwu+1a
rFajUt28ywtkjl7ERCiM/v1a19t23GhEWdco7C4wiQZNFSuWrWXrKRVSW0cCBgzARtJIYUkxe1P2
sv9gNkvensZohc0t20YHWwtskAhjC70JBMIHhN4E14HcjAxOawAusTMlj6kDAjEXahEIBFeZ2y5Z
8sWixWRVlZH18suolsUxzhpQ17Jj3TJS9/yKStqbcRHRRD1yD+ZASc5+4lZuIP1UGXJXXyJfjeah
IX06lFtRlM6sVdkMHWBG2slSGpDxdHgY0oz/kpBdjBpHouc+yYT+9gBkH/yZFZvTyC1XgZUdY8Y/
zILxA1GV5xG7LpPvVs5sU37r3y/XFTTAjP3ZxSg1FoyaNJEFYV6YA4XZ6SzbfIBjJZcYHOCLtCgP
7+nPEzXAXqde2tSrUfJV4lY+S81HhQWDff1ZEDGGpFWJZNRUk7F4Nap5kUzvb6b1PG8r/ROYivwf
eHXRfjxdq0g9WsuMZXGESk5q1XPTuXvx7A85p6qQyvowcVoUU+53BeD0oR+IW72JrDNVyF3vJnxO
FFOG9+9Qx0C3Hhytqmix+zNabCi4RhOa1L1sPaUiIGwKK8PvaTOZOZK6g1fWHWJFQhpDF4Rxq6ZL
ps97henC1EJvAoHwAaE3wbVHU8XOlEJkigGMsipmb8YhjtX4M9RWJNAEAsHV5bZ7DWfGO2/jZ9+b
6I8+arlhVtcWk6O+hw83fcl7c4JIXR1PVqkKZeVvxC5ai2z4M3z9zQaiJvRhbcxiDpaqtJatLC+k
QnEf33zwBotCLPh4VSKnBzzAdyvnExNsxmebs5uSBSW/EZtwiDERkaR+sZjPI3xJ2/4D+0uMX+an
LC+kRBHIlx+8xZfzgsjY/gNp5fUoS07w1roDuIc8zDcfRDJKUsKvJSqTdFSYnUJCthmfrozhpw+e
x7vmBPEphbw4N5wAWzveeHsO0wfY6zzPGFTns1F5PsPGDXGE9jmvV8+q87+jcpvEuk1f8N4r/2D3
h8v5qUiFsiiN2CWbcAqL5OtvNhA94S4Slyzmx/zKDnUsevd/OthdcF1mNJw+WQLYMTnEq8NTn6Ej
QpjgZkHFqbxu8TqOQCAQCASCa0tFSR5pJZdwH+DLhGAX1JpStmaUCsUIBIKrjplQAUglLsyY9g/6
yWU43f8wnhvTyK+sRXbmB0rl97Jk2hgcpKB4fAY5SS+z41AxIx4Z0KEcc4kj40e4YA706++K3BYm
B7hgjgT3/r0goxwAB0cvVsZ60NfRhoY6JQ0SO2wkjVTUNWLsqlJzKycmB3tiIwGpwoN+kjRO11zC
/GQ6KsVwXgoZiA0wOXwi+7M3mqYPKwvUNXlsTc1mcsBAFrw9D4CGuhKjzjMKiQtPTB6KQi7j+J4N
OvUcPRCk9nczY2oQNoCNzyjG9d/EjqSTyO33onL7B1FPj8IGUDw+k9JDkeze9weBo9vW0aBSiY5+
Q5Ags7UAikk7WU6YwrXdYRtemzeXFzHDofmJ0DtvLmW/xosv332SvpIrSZed61az7CC8/0EkQbaW
xMUsJUniz4IQMzbuyiS35BKK/u6MCg5kenP/v4yyvICPE5PZd7KYyjro5+bChPFhTB3h2pLAWRaz
lH1Ww4kOUBG3OROVxJHg/neQnF1PzLtzmNDmNaF64hev4usSRz75YBp7l8Wxs8aF5JXPtPjK14lJ
fJVRSGVdI3JHR3wHDGTalBB8Wz35MkYugMLsDBJSMknLLkZt60hYWChencwtGVenhuyDh9iYkkl2
UTmVdY0gkREQ4E90eAjezW3QprMX506jInE1SZLhvD/Jjs+2p5Fxqhys7Ajw9SVqekjL6rO4mOVt
9NZkU8PXNekknbjNB/i1qBqZrSOjgkcSpsjnlXUFxMTOYYKbjXC/WwBjbW6MT4nYIWKHiB23B0dS
MqnEjLAABd4KCQpOciQlk4pgVxwkpseXrvhKXMxSkqyGszRMxmfbD3GsqBysZIwKeYgFk7w4lppC
/K5s8spVyBXuvDh9Io8P6NVyvbFxC6Ci6AQJSRmkZRdyuqYRhcKFqVPCmBzQ1u9LTv3Gx9sPcORk
Kdg6MjTAn5emBOGuZ+V3V9vRJF8e8ZuT2X+yGJXGzOh4+eLcaUwfYG90XBMIRLLkeiOzRi6TNmcA
QAqoNFB5porKUz8z+eEf25zud0bHRlJWFjhYXVapBeYSM6SX45LEDLi830cjaUk7+CwlH5VEhreb
HUpNI2pM2A9EYoasVdnmEkADyhIVMkcZ0pYEjgUKW9PM3HdACO9Pt+CzXXt5NnEbMoU70RGTGaMw
7rzLrxrpTcjI7JFLm6TUq+eBIJPZI5NKr5hLLkNVWUulqgpZnyCuHJEid7JHVVrVoQ7BjcM3JIh+
KdvYlbCWY6kDmBDsS9AAD7ybbyDMbW06PQhWnkpj/ikz7g0JYeX0XuzdlczGhETSTj3CpxGB2AAV
RRnMWvw9JRI7xgSH4O0IGQcP8fEnazlyKpz3wwe21F95Mo3YUxYEBPhiXgeho3qRnp3MztRSJkyx
aXXTUMjeUyr6BTe9dra3tVAaJR//ayNfn4IxYUEEKOwoKTrB1pQDZBddYtPbE3GQGC9X7sEdPP/J
IbB1YXJYCFJNKXs3J7JVA1KJo0n6MrbO7JRtvJCQjdzNkwnj/XGQNHIsI5O9Bw/wzxr4stUrU+11
NlghY3+zbWavsiBghD8x453IzTjExtQDnK6T8eW8+3S+cmXMdbkZPzBrVRoqzAgYEcRg20vsTdrG
rqYIIZzuFsOgzY30KRE7ROwQsaP701BXws6MUqRWTozpb4eNlQWj3Cz4uiibfSUhPN4u2WVUv+ii
r1SeTOOVUzImTBrJ1EkW7N/1I7t2beZYhh1KjQUTwsYwXaIiYXMKK1Ztxf3d501+Zejcyf/y/LIf
UUnsGBMynAmSSyQdzGTFqs85PTuSBSOaJumq8pO8suwkXgMGMGG8FyUns9mfspfccvhy3gN6X3fu
SjtyM5KYteoAaokdY0JG4m4LRw5m8vEna0k71fY1bG2+b0q8FQhEsuQGoO2WWt7HGqeBU1j30XMt
wUVZeR5kupMBxjhy9sEf+Tijkfffnc9QR0saagp4/k3Td53XVpeNQoYqW4W6+XiD5hIVNY04mFCu
srwcm/7+fPruAzTUVbE1MZH4hAOMWTDcqPMmxE40qR369Kwu+g8qVRWVKjX95FJATdEZFfL7rJFL
Zaj2Fbe0FVSUnqlC1l8GVIlOfZPgoLiHlW/DsnU/8uupk3x86iQfQ/PTxoFMHT+S0W72nQ5hk+dG
siCgaZIwdIAnAQmfszAlhaSwgTyugISEvZRInHg/dhpBjk1PZ54OC+LbdWtZnvQDe4Nd2jxJnDx7
GtHN5aGpYr/jf0nLyOTcJK+Wpz65GemUYMFLIR4d/FBZU8z+UyoCwsJZGj6w+ddAhjpuIu5gFbk1
9QTZNhol1xjFJT5LzAZbdz6JndbyZPnpYE+ej9lGhSmq0iiN04Wika935SG1def9eeFXnmaHDUex
eBVfnzpBbk1Im4leG50B+1t+f57ogKYnT2EBXqiLVrH1ZCa5NcP1ThT1XTfYqprPEjNRW7mwsnU7
QjyZFbON08Llbkn02dxbY4RPNfcDETtE7BCxo3tTciqTjJpGFAH+zStDJIwKdufrxJNsTSpgQsQ9
HXzLcL/ouq9MiAhvSVj4OjaSFrONihoZK1slFBSc4YWEfPYXqRjqa2+SD25MTEElcWRJbCSjFU19
d+r44fzzzbUkbT/AtIAnW04fPz2SRSHNK3k1QSxbvIqdJ7PJrQkymKTpTDsa6i7wWUIaaisn3o99
vsW3pocFEf+vtWxM+pGtIzx4ur+ueKkkbpVp8VYguF7cdnuWIJUik2rIP1OG0sDHUdyGP4ys6D/E
f7ufEpWKvEPbiXgmii+Onu+SCOqaeqQSS2wkZjRolOzcnkRe3SWUV2HLhsEB/kiL0vg45QTnai6w
dfMP/FpzyaQyCrMPMGvZN+wrqmpeLWOBuZUdSMywkTSSV1KNUqPnPCDv0GHySo179cWQntVVv7N2
3XZOV57nwLcbSC6VMTFkAJ7D/4H08nWVlRz4dgNbcjSEjr67S3YXXH36ut3Dqtg3+PHdSGLCRzJq
gBMyjYqMg4eYH7OKt3bl0dCJcmW27kwe0Pqpj4Shwb7IUbH3YGnLzYdigD/eVqCsq2/+14jvCC9k
VLP/ZPmVbiKxY1T/VuVJ7JkwwglVSR77i5Qtg/re1GJkjl6M0ZLkkUoskEnMOJaaTELqCc41fyY1
aPwzbI6dTpCjpdFyqYryOFJzCe8R97VZgu/g5stUXzuTdGW0LiT2LH03mu9aTRoBGuougVXTCjml
plG3zlp+d2TMALs2N6febhaoNZfaXG/qdRVFeRwpv8TgkNA2N8gOioFMD7ATznYrDssGbG6MT4nY
IWKHiB23AxrSUk6gxoyg4CsJR2/fABTA6Yw0ctt9mtxQv7gaviKV2DGmVTyR2dpjIzFDpvBoefUM
wMbRHimNVJg4L1eWF5BWdAmFbxBBiit919xKwaIFc/h83iMtCVmpxJGwAKdWsciGgP52qDWXml73
vwbtqCg5wZGaRryD2/oWEhsmTwlChor9rfaUae/7psZbgeB6ctutLDGX9iF4uAtxS99A/VYcka66
z7VxGkZM7AziPtzA1E+WI7XuzbiIN4gc7tq1hEZIGKOzv+HZV2Kb3pcNG8nk/imUlKigf9faZ6O4
h6UR1byTuJVJCTB4xEC8bMuxMWG1n2/wQ7xUtJXYxXGoNGZ4DfAlJmI45hIzRvk6suyTz2mYHcki
HecBfPHhcpi6mKVa9nYxRc+q/Gyk1i44qdKY88wmZG4DmLHwbUY6yYBRLFlYS9zqtUz9RIVT/wGE
L4zlUR85Ffn67f5mSH/h/TcAB4UrExSuTAgLA+o5cvAQy9alsHfzVgJ853RYPmtwgmLbC4d27+BK
bXs1LaEvV6IsV6EEVBnf89Cc77WWce7yjQwgtbLDwaqdvwYPR7FrM3tTi3m6/0AqSvLYV3QJ7/H+
rd4vbtXXbD1YNDuIuasO8PG6RD4G5AoXRgf7MzXEH3crCcryC0bJpXQsRwUo3NpP2CQoFDI4afyE
y9g6m4q3RFnyGwmbT5JbcoHCkua9BwBoK4s2nV3+3UYiaSOzVGIBVKPWkxg2dJ2qvFS3TvrbwUGx
yd8NSXg03wyrdE3GNY3NDwTMOqzkNGRzc0fDPmWyvCJ2iNghYscth7KmmJ3ZKqQSRwY7wrnyy6uI
ZQxWWLC3pJit2eX4jlAY3S+UNV33FamVHTat+7KkKc6Z29q1iXdSiVkn212NEhjc377DqhkHRa82
q8elVnYorDomYkFl8HX/zrZDVa5Lh+DgqMBBYkZJ0QXAS6vvmxRjBAKRLLnmUzoeenU5D716+e/+
/Hvzw61uql1ZuumLlr/7DRnDyg1jDN8EugXy3crAlr/7DniA7z54oOVvd9+H+e7d5jqsFCxY8AoL
WhcwPqD5P64t5fTtfx/frbyvQ/nt6zKX9OL9D5o3Ya25AAp/NjXX3VB3hlfeLKGfrUUHmXWVj8SG
x6dP53Et3+WbMP0FJrT6Xdd5kXP+wW6ptXZdeT7cRuf69KwCkFoTPn85i2QdX5bqN/xhVm542Ig6
2ttdcD1oqDnDx4k/o3YL5LXx7b+GY8nQEQ+wlHKe/SSTX0+W602WNNQ1aglZjaCh7cbImnrUXH61
7hJqwGvEGKKCFR2jgcQMqW3rp8GWSNvtsmyj8GJMfxlbMzIoDPek8GAmldgRHeyiU1bvgDC+Wx1E
RkY2SRknSMsuZOvmYnbuymTJ29PwNlaukkLdiV+TJ13G6qKenQkbiU0pRmplR8AAVyYE+DO4vysl
SVtZkdFusqVFZ83zzM4hMfZ4o3Cwmwib5r2xKspVQK+O/tv8VFNqJWvaY8vEvmLIp0YrLEXsELFD
xI5uTmH2IfI0jUApC2NWaT0nLSmTihGKKwmELnxN2GhfkZhp78tdmT+1jlum+KzErPON7mQ7WpIn
Wi5V0wgaQ75vYrwVCESyRNBZKsrzmPuvQ0TNDWdMfxn7dyWTK7HD3dbyusqRX9SHcY+IT/Te9kjg
WEY+hScbmRzi3mbn+ZZB0Mqi6eakebA1lwB19ajb3Mlc4nT5JdpvwKequUCFRoNDq6dGFeWlVAAB
/e2xsTXDAVBrLAjwbZusaagpIe2UCndHQ2HQklEhXmxcd4KdJ4spOViKvL8/Q3XdnGnqyS0qR6Zw
Iij4PoKC76Np6fD3/DMhk8925fHpeCej5LKxdUQGlJyqhjYTCA3nTPwkuI2tcXVWFJ0gPqUYxYCR
fD4vrNXGmfXEb74EmHEj32RzsHVq0kmRCka0UTwlp8RXr24UCjcFUvI5V1RFAx3341CVnyG3phFp
fwUKiYmTcSN8anTEPSJ2iNghYke3RsnelALAjDFTHmKMou3DFXVdFZ8l7OX0qWzSSka2+wqVvv59
9XylcwkZw3HLxrZp9UhJkZIG2u5ZmJ3yA1+fMmN6eMgNs4yNoxPyyzoc0TbZoSy/QAXg7ijrcowR
CG4EPYQKuhd9+w9nwXhXPlu1mpEvxpFwypKYuRNxl1xfOR58ehL9ZOJLNLc75lZOTB7hiKomn3cS
0jinabuGWllzpmnDPa68J6uwMkNdV05u+ZUnERUlBaSVdHwaqK4pJOFg8ZVBVVPF1u1N5YX5OmHj
6EqAmwWnMw6w81TrJZz1fPZJIvNXJbLViMmQt68/gyWN7N2eTFr5JYaG+OrcNPncqUPMWryW2O35
rfZhkeDt5oKseWJkrFwObgMJcrQg92AyaSX1rfRxgq+zq02czBhXp7Lm8lL1tp9grCjJY3/Rpctz
yBt3w+M2kCCFBcdSfya7RtNqQlbIVxnineYbZxdfAmzNyEtNYevJC22ONdRdICHxAJXA0OCBmLpF
nzE+JWKHiB0idnRvKkoK2H9KhcxxIC+FBTI6YGCbf2HBw3lxhCOgYmtKsWn94ir5SmcwJm7Z2Dox
1E1GSUYaaeX1rWJrCRt3ZZJ2shqZRHLDbCNTeDDU0YLc1OQ28qFRsnV7GiosGDXCtcsxRiC4EYg0
XbdDwujxkxk9fnL3mIBreWVHcGv1xzHhk0kr+py9B/cy6eBe5AonvB1lVJSXc7qkGjUwJvxJRjU/
bQ0K8eLjk5nELl7L/hFe2NRdYF9GMeaOZqBlPrs34XOOpHgSNsCS/SnZlGjg3vHhjFFYApa8OH0M
GYu/Z/ni1WSE+DPYEdIysvn1VDX9fMcwfUAvw0kfWxfG+9qxPKMQqcSJyb5OOs/t29+XsP5pbE36
htk1/owZ4IS6vJSklExUEjsmh3mAxMY4uSTw4vSRHPnXXl558z0CRvjj/v/Ze/uoqK574f9znxWO
aTisZMbUGXqZMQVMkRYxUUmIRoPF+BLfqpIaaQ2kBG+4mChWJUshj2AegVwJRi65UFoILcYrxp9R
S+JLJBoNUUIFaXDSDDTOeK8zNp5pLoe0HHJXf38MIm8zvIgvifuzVtaK58zZ+7u/b2ef79lnw0UO
nLow+FW2ProB9Sl/NZb776rhD4f2scnHRaT/HfzR8hnHTllpuQv48muvmyxef5fS8WzMJKpf+4Dn
0ouYOyUM//YvOHCigfPtYnn9zWLEXf4kPx3JH1/7gFezXuMN/wDu978T7UuVPzW5H6JHhz1KypTB
7/k1oJgSuUPkDpE7vtX86UQNF4GHoyb1uecP+DDh8Uj0J/4//nTqNH9aGDwI/x6mWBkCA8pbPn4s
fzqK6sz9bEwvYm7UA27fPdXA+S/vYPnzUR50coPyv893O3W4Nr2IGVEPcP/df6f6xBk+sqmMmTKP
RSG6a84xAoEolggEgm/lQ9TLaSnMqKpi54lz/NHm4KOLoL/XSORDk5gR9SiPd7mJ3v/QPLZ9eSf5
VQ0crqrG33wfTyUs50dfHeeFHd2feOR7g0ld+H12/r6aPYe+ZnRICKujprLoIVPnMs7vBUXwuy3f
5d8rjvL+qWoOf/U18r33sigmhmcfH9ftDai3ok9k1FikP3yAf9gD/Mjbn97z0bF6zTOMrjjEzlMN
vHqqBunue/hRSBibF87gsY6lwQOV676wqfwm7R7KDtXw/h/O8Ke77mFGTAyRX9WQcWhwb1oG1Ofd
32fzmp/w6o4qDv/+HX7vcydjzAE8uyaJH3GOZ7IO97u/zPXmvgcf5zep95Jb8QEHfn8Y6e57mfbE
PJZerCb7xN87NhsV3Gjuf/Bxfpdhomzvh7xvucBHF93f3Pub72NR1FSejhrDkLxmgDElcofIHSJ3
fEtpd3HglAPJ516eeshzwXGkeSxzQw5TZvmcPZa/MtD1zcMZK4POmwPMW98LiuA3W3Tk7zjK+4cO
o7TfwWjzfaQ/N4e5t0Ah4b6wqZRn+JNfcZTqqip+334HPwoZw+qESSya0vvTzCHlGIHgJvBP83ef
/MetLODbix8RVhIIBL3ITX+ZA1/dx2+2xN7wz8wEN3XWTMtXX+N313d6HT/wegFZf4Bt/5bEhLuF
UwhE7hCI3CEQCATfNBa89eEtI4vYs0QgEAgE3xjavvqCF36Zw4KtH9L1y+a2Lx0csPwV2f/7Q/pT
sgKBQOQOkTsEAoFA0BWx3lAgEAgE3xhG3HUvTzx4L9kn3uFftjp4PCwAvvyCY6dq+OOXd7A8IVIs
1xUIBCJ3CAQCgeCaEcUSgUAgEHyD8GHx08sZ4V/FG1UN/HvDGeAORocEk54wh7neNpETCAQid4jc
IRAIBIIBIvYsucG0qQqqpGekdGOvveX18lULqo+feKsjEAgEAoFAIBAIBLcpYs+Sm8hlayU/jVnN
Z6p24wsCmp2MlamcsCnXfO1wjeOy7TQLXii8qTZpa/8LGzN/w/sXW4bPzh3j+tNX7SLjCAQCgUAg
EAgEAoFgUIgNXm8kmoY61OLGtVzrBfneMaQnzLm5emn/mpavvhb+IbjJ8aly0aF++/oSCEScCoRN
BQIRP992WW81XYjc9q3g9iyWaK3sLsjkidlzeCI2mfKTTQBcbNzLT2PSOldrtKlNrI2Jo6LRvZrj
fE0lL6yIY8bsGF7YvJ218XEU1jtBU6jIS+OJ2XOYNjuG59IL+1zxUfpSJnWuS+SuXEl5vfNqm/Gx
TIuew0/iV1NR09SnyH1di9bKvuIsfjJ7DjMWxLF1/1naOn5/sfEYa1fEdbS7nneuXNMD9YvPyCiu
7ChatPDmG28w/dk0Ip59mWdeq3SvzPBw/L+bPmTBC290rt5o++oiz7+wlTeb3CtE/rvpLM+nbyUi
Lo1ZL/6aAxZXnzL86rUd/OHLv5KdWcAbFheXbaeJ+eWv2bB1G1OezeYNi4uGU8d55pfZTIlLY0rS
Vjb9/lznWD+3nOb5zG1MiUtj1i9799P21UU2pWfzTPFpWrzI1Ve/PfFkr8vWSn4eu55NqYnMmB17
1UYCAFoUC9vT1/OTBQuYFj2HJ2IS2fpWNS23TE5QKHwxhR1Nrm9XX9eMyvaVsWw6aOlzHFtXxLKl
qukm2MvJlvhYtp6031w5BL242HiMDWuS3ffD6AX8Yk0up66spuxqtxsdOzfQTy7bzh9pS6YAACAA
SURBVFKel8tz8bFMi17AT+NX35x8d7NjYyD9f6PyYd98ULCan6dXDjxnCa7FqXg7PZFp0XG8Z1N7
nXsvbzXTomM65+23vB2HOyfepJgfmO6uc6wPY/ufHNzufraaHcc7VuWmyyMQxZKbUCu5gFULJK+k
hPSlP2D35sw+km6Phz1bNRk5uzDPXUFZeS5TpGZO210dD9Dl7KjxIa9iLwfKswh2VVO0/2yvNuI2
pTFeN4qU7duJDTe429xcjvHxRHbuKiFlbiA7Nmf2GZg9r70yjkZtHHnlvyMnKZITBfnUOVRalLNk
vFSEPCmWnbtKSJ5roCg9k1P9VDc/b6jijYY7+I9t6bz3b89w/5fnyK/63ONxr/r68s9sfO0d/MKi
2LsthZQoHfmv7aD6i7/1+u2zzy/jwbvvYX1aEk93bLDW8sXntJij2LUlkcfuspPxRg0zEhI5UZrJ
bxLCqN5bybGLf6Pli3NseO0wfg9GsatgHalRd5L7+h6a/va/7na++oJXt+7gvP+jbEuIgH7k6trv
oiBdbx/wYi/V2YAaHEtZSS7zxxpEdulEYcdLmZzQAkjfWsSeXSWkJ0RyujiL3P2WW0LCNvUCdTYI
Nem+VX0Nh6xWhw/jg0b1PinJzE9aT9wk000ovtmxKr5EBOluqhyC7pzZn0vC87kwdg4520so+49M
Igx2MtZkc0bRutvtRsfODfKT8/W7SFqRxmnVlyVJaezcVUTq8kjqyrLIePPsjTXIzY6NAfT/TcqH
faNSd+4S5kmBA89ZgmuYwLtotLsAF1ZXa7dTl63HKKpqRvININQsfyPsOOw58abE/MB0d71jfbja
b9Ps7C77iPEJGewsz2d6sP5bP9cTeOe2/Gs4km8gyUmxjNFLMC+eWYdqefdkM6Hhnq9pPFmJap5D
4rxI/ID5ScmcqEnvyE0ymlLLvoPHmD85kjXbSwckh7XmMKo5muSnpuEH+C9egaMmkXffb2b2AIJT
8gkgbnk0o/UyxslzCC6rxqq0ItsrcegfZvPyGYyUwH9xHI2HVrKv5gIPzQvx3N5dd6J9+Rl7TjSw
6MGxpKatAeC/LX/u+3jTX7wUXmr477vH8srCBxnpA997fAZ/PFHAnoYviIwaQBL3uZenHh/D9+7+
DrTfybaM7/O9e/1o+6qFNp978PP5mstffc3nFxu4fG8Yrz0+zt3PE4v4XpjKCP4M7Sq/eq2MzxlL
ecIj+AENXuRKDerR7yDsFfEY4BPAkkUT8NfLIrN0u/G04lAgYulCHgh2F5FGzownRVU56rxScCxk
XZ6TnJJ0RkvQppwlKT6fZdtzCXaWs67gAhFBUFdvQZVDSNm0nkfNsvs6D+dA5YO3SijaeRyHS8M8
MZqUdSv4oV7ifE0hG8s05o918bt3GvjHP9r48u9fY1uThrEwmwf03XdR3hAbx/gNucSE6jsfiNZt
riW9MA3tZAVFe45gdagET5pD6rp4RsuSu//9Fezec4w6u4vQRxayMi6YLav/DVtre5e+tAHJuePg
pyzJyO0sll7R26q8CyyJ8uXoSQuKZiBxQzzqoV3sq/kURRtFypY0fhysB03lnbJ8ivZXo7S2Ywx6
mOS1yTwarO9T1tR1scg2Cw4MaPXl/PzF49hUiSWr0lg5M4TzJwvZWNxOXuE4t5zFrSx5zId9h2px
KDArKZWVM0MAjTP7y/vUUZvmpDQni30nm9EkmYiZsaQmzcGvv6mZvQFVDsCslzl/cvs1y+FNN/3Z
QHDlQeUwWQXVTF+bzZqZV+4zBlasSkV7MYvGJhdGutjNS8xPMbb28ovkRTrWrcjqETt4tGlPu0XH
hHP8vTsG5CcfvFVI6Z7jODQdsxJiUfeUE/xCVmf8e8x1ioXczRUEJ6Tx8uKJncf9o55ksyyxz3rl
7a93fxuMXlKT5iB5iCOlS4z26+Me9dGjGDSInNM1R7xXsJqipnEUb41HUu3krknlz6On8LdT73az
qb6pxOu9oHssZhNqO+wh/w5dbm/3DtA49Vah+5xkYFnCAhptMD1olNcc0zVnDTXvCaBFtWNVJEKD
fLHZXNCZi1V2v16BHGwCLQTjlXvwdbRj77mOJ7sOtD0v96gBzif057rEfH9zoAHGfB8VK8+685Bn
xsufktQzf8uax5w0WF3q1dpe7YfKrkHHWYvtGEkrc7G1tiMVZ6M357JSLw167tDXeK9XbhNcf27L
lSWSPIqreU7CbJBRna7OJND35NyFbNBxxU1HSDJGvftPt/iHx7J51RxsB0pJ+NmTPBG/nnca+/8M
Q7G7kA0BXHV9Cb1Rh+oY4JIt2Rf9lcCRQALUdne7StM7LJozh2nRc5gW/TN2N7lQ7d7b/V5IFK88
PYnPqw7zs1/+P6a/+GsONLk8HnfT914jly+2oNhqmP1sGhFxaUTE5bDTptJycWDf7o24S2akzx2d
fVQf2sesZzfx418W8ervG2hp/xqNr1EvtjDirnuRO/+Kzne43/xdZKDtq7/yebsMFz+jumPz2P7k
6t7v4OwlyTr0kkhkvWwpmZi1KIyjOZls31/N5Y4Qe2jxSl5MiATAUd+MZBqHUbqi61pU2YDZKOGo
b0ZxOAlduprfVpSTOEklf1tl53Wezp16M5vcAy5StpdwYG8R0+VPycrZ23mdw1qLzTCD37xZwqb4
iRjHxrCz4tVehRIAsx6szqvLXHcXVxK6PB5qisgoszB/VRZ7KvKZQgNZBdWd/WeVWZi/NpM9v8vG
7DxC+Zm7SVk+oVtfA5WzuLyw10O6o74ZxWlBCVpIQUk+y4xOctdkQVQ8vy0vZJnZxb73m93ylGWT
X6WRur2EY0d2ETfWRf62tz3KWnTQgqPpLA6XhTpXCDklJeQkBHJ0z2EAbPUXkEwh6CW3HLamWmxy
JHmFpeQkhXT+7pOD+R511HiwkKPOEIrfrmBPSRrayXKKBrAc2VZv6fSX4ZDDm276s4HATd2et9HM
U4mL6jHZlgys3PoqsZMM3ezmLeb78osdTQG9YsebTXvabdz/XB6Qn5x6K5f8Q60kbymkeEs8jp35
HLVJBBv7L4JbT+7CKoWROG9ir3OjJy1k5VPTBuRvg9FL0Um7x+NdY6O/Pj3poyeDyTld+49YFIts
PcbRRjtHC3Kpk6ay6ZfP9bJpf/eCrjYd79jl0f7XIre3nHxmfz65B1wkby2keFMsdcVFWDUdoWbZ
qz929f2h5j2Bu1CuMIrx4QaUc/bOz7E/O1nOUSWA8b4a+qBxjLwBduz1UtWDXQfantd71ADnE91i
vp+5xUBjvifedOcpz/gZI3vPfbzkpMHqsq/2hxJnfuZpbF4XjdEUTdnbFaycZBrS3KEvea5XbhOI
Ysl1QVMvcfWLFA3FpaI36ZAkCTSts1yiaS4cqns/DtmkQ3W6Os+1aSqK4j7X4rAjj41mW0k5h/aW
EDe2laJtu/qVQ2+SUZ0XupRnVBx2F/IgVib09WiuN/hiHBvDgSOVHOv478CuEjYnTPBesf/iC/yC
HuA/tqzng4IUng36O/lvfODx+AifO6D9686bldaucrFjo9aR996Jf9CjvFeayemO/97blsIrMcGD
tlfDqXf49z98zctb1nGiYA2vPze9s6Ax0t+Ptq++QL3yR2/aWzjw+w851/K/jLg7gFdSl5P80J38
6o0PuNx+bXINh71uVx5anEpBRgyOQyUsXRDDhry9XOzc10fDes6JMTyQEVcmttZmMIa5H4bPOQld
HN+x2kpi/ORx4LAAmsdzLcrHlO60s2xtMg8YZUbIBqYvikZrqnVfZ3VinvwkyYsjGSm7Jxj6sSEe
3ziYTTKOc5fck7Kack6rISybpJFfUE1EUiKzw034ySamL56K2lRLm9rEjj3NTF+VyI9DTYw0hpC8
KYO4SaO69TU4OeVeb3es55yYH4knMSqEEYBDayd45gpiwk2gaTjUdvQdS0DHL11N2fYUgmW4aLuS
y3z7ldU4MZ7UhBn4yzKy5IMkGwAVW5MTc3gAI67I+VgsifMm4ieBprYiyQbalLMedQQgyzKqrZaj
Jy1I+hDSt+cS128xQnX7y6RARgyTHJ50078NBJ0PCk0ujOETvfxp+6528xbzkge/0HWLHe827Wk3
BuQnLY5qisoaWPJCIg+Y9fgHR7JkbgiyMbDjTXU/xZKaC+jHRnZOht37J8zp/G/tmx/362+D14vB
w3G5y5gH4ON96KOvN8oDzzlqt/79jONYFqWj6OU0imokUjfF4i9pPXJvP/eCLjaVtWavMT1Uub3l
5DbFQlFZLfNXrej0j1mTDMjmH6BXLV7k6er7Q817AgBbjQXJPI6I8ABU+wVUoE21s6O4minLZ6A0
tRI8KeCG2LHX+8s+7LrM/JcBtYeXfDbQ+UTXmNMGMrcYUMx3x5vujJLkPc/0mGd5/u1QdNm7/aHG
WdeC0zXNHW5IbhPcCG7Lz3C0VjvvnrTw0LxxfFZzhHdtMolrA5EkDZkL7Ks6i3GyiRPF5dja3a4f
OjkaaWcRRftNLJscwImyIk67VIIBW00F68pcpG5JISLYF73s23fSkSRkqR2r/RItZj3Bk6KRyorI
fyuQuKgwrFXl7G5sJ+4XP+j3Wm+YJ81BLn7V3e7MCajnjrAxvZwpGbms9PId4+cNH/DC3hbS1ywi
0nwnI++6kxF33ePxuHS3Dpkv2HPqc7734L28X3GU8+3uYsl9YRHIFXvIPWTk2SljUJvOsPa1KqY9
n0hK2He7d+xzB34+X/PZxb/S4t/7cVX78m9IPt/Bz+cO2tpbOLD3EJ999Xci28E/5AG+t2MP+Yfu
Iznq+/zp1GF+VdXChmfvd69q8LmTGTHzOZBeRu6JMFK9yPX03d79xru9PhLZxGPAaSBJjA6fwcvb
Z3DZ+jH5r7zKqs0uCrLikTUnjQ4IDr26nLaxxo4xyL28vNEBEb+4+i2sqrrQcH/C4emcam9AkQOJ
6Po5W/vV6+rs7YxfNcF909JcNNpbCZ4Z4HEIxqBRKDUuWlQ7u4trmZKQiew8grW1FWtOKifyro5V
Nkej2hpwaDqWjb0ab37GIPw0J7u79DUoOXtOWjQnjY52IpLCGAG0qU6sDpiSENhx/hJWxYfpQTrQ
FPYVZFNa1YxsNGA06FDONaOPWuhd1qZWxi8P67zZ2+ovoQ+aQZvqos4B44MNnXJGrArrkFPDVu9E
b5qDYq/1qCOAMVHJpKsl5BekUVoQSPLGVBaEe38o7db3cMjhRTf92UDQ9XEUZINvHycULiqgl1u7
2cpTzPsBfn35xdjWbnHqzaY97TZgP2n6GEX+Qbd41Fwa+qAw9ANYNKi2tiLrpU5fmZKQxs6l7Whq
MxkrczEHG/r1t0HrJVxiZB/HZwWpnWMeiI/3pY9ryTlddX7l1U7w5HFoB/Yya1MmD+hl0JzdbNrW
z72gq00v9pNbhiq3aj/uMScr9rMoBHbZX0JDVTSMQePQnF78sYcuhpL3BFcLrvqxCzEaVCSlGkXV
sO4vwmZaSFyQxkbVlziTDtV+5LrbsSd92TWC+gG1p9grr3k+0bU91V7Z79xiIDHfE2+6k/GcZ3rN
s7zkpKHosq953NDirKPg9EhA/3lGG/h4r1duE4hiyXVD1gVCTQk/3XkJjVHErVvPo0YZGEdyQjRZ
xZksLZCZMm8B001H3InJPI30dU6yCnJZug1CH4skWHcB2Qd+ODORxKZXyVoZj9ruQ3D4NFLX9k46
IyQDUyYFkPvyerQNubwYNY3NG1vJLShi6esqxqAQlm3MYEEf30X3vDbRy7YffsaJpGfEkZtXwtLX
s5F8RzErYT2J/Wz4FDZlNv9q20NGZi5q+x2MCQkjPWESYXd/3edxv7vvICXmATIqdrBgx51Mi4pk
hv8Ztwz3juHl52eQ9cZhFu6oQLrrHubGPMm/9iyUACN87mFa2L1kvf4b2p5LJNm/+/kfRT3OYw27
+NkLGch338u0xx9lUVAVFy+q+IWMIf35KLLeeIfZFSp6/2BSnptPkM9nV9u/28S/xozlhR2V/DFs
uUe5VNufverHz+zZXpetIpn0/RbiLEnx2czasr3ze/+RwROJS5hKUnotDjUWs+rEocrM73jQanFY
OHquldB5AWjKBawKjJd8Om/MdQct6MNjvJ5TlQY0Se6y8kqjseosctA0NOUCDk3Hko6bfYvqxKr4
sszLJlx6swEONVFXdZZGOZK8SSa0c6A3TSWnMJXRkruP840WMIag2feCpOt8wGpTLOzeY+GBmeZu
famKa8By9n4GvYBN9WVWx3nV0YxDG9W5mZhqa0ZBR6jRvT/EjnqJnPJyfqiXaFMtrIu1YAwPRGuv
9iyr6kvclc2KNRd1TS6CowJQlWYcqkyoSYem1OJQdcy/or9ukwSLRx1dbKzmtFPHrHkr+O28WN4r
yCR3cz7jy9MY7eVzNlWxdPatKtXXLIdX3fRjA0GXYrLBh7qaZloWj+uyQkvjnbx0Sp0TePmFgC62
Ousx5j35xZjtP+kVpx7jT6ntZreB++vHgNQZj22anXdPNmNcZBpQscxo0OFosnCZaYwERsh6/GW4
bK1FRcd4k47zNSVe/M05aL38c9rj/Nfl7/Y6fl/WY51j7tfHPepj6DlHVRo6+wdoUc6Sn1eJrJOo
q7LQNtmE1iP3eht/X7Hoyf7XJHeNl5ysOUHyca9CBtrUZo6ec2FOCkCi2aM8qnKsUxdDzXuCjmKA
rZXgRQHoja3IVGKzVbPvgItlW6LBXoIqBxBslFCbrq8de+IxPtePHlh79uGYT1zNc2p9P3OLAcZ8
73dfLo+6c9SUe8wzPedZ5738dii6bFEt3dofapz1VRAbytyh5QblNoEollwXRgbP4bcVnqqnEg/M
W8F/zlvR5diTHcnJDqZofl3e8W/Vwrr4Zsx6X5BkFqzKZMGq/nqXmL0qm9ldfjd60hy2lcwZgOQ9
rw3iP7uMY4Rk4uXy0qvths9gW8mM/vVhjuDtbRHuf/j4sfjpp1n8dO/feTo+IWoOb0d1lX9q5//d
F/Ig/7HlwQGMzYe5T/+CuZ3t+1+VCRhxlz+pqS+Q2vWSJx7s0k8E/7ElokebEd3aCJuyiKNTOv5x
b99yjTB3v6YvPNlrZPCcbvYQdOhUDmB8MOzYVoTxhRhCzQZUh4XS4uPIodEYZQnN4UJFQ9U0Ljss
lOaVYmt132QUeyWO9kscPVDLlKRIbFUl7DjnS+r2SBR7ucdzek1CVorYd9JCXFQg1qpy8g+6iNs6
FcVegaq/uqxedTSj0mX/n74KrIYQUMop3akxf0M2IyVoM01Ar+ayr+oscZMDqDtYRFbZBVILsxhv
CESvVXL6nB3jWIkdObkcJZIHH6FbX/qgCQOWs683PJo+sHOjOcXeAHpT5+8d9rOgd290p2jtaJqG
hkab6mJ3Xj51rZBi8kWWPcg6yYUqXd3Irq3LzV/t6NsoSyj1Z1HlAIwdv+s6SdDLnnVkbj1LaV4D
simDHwfrMQYZkGs0JE3lTH0zxrHj8O9j7EpTA5rxB5hlCfXctcth9KIbxX7Wqw0EXTLu0oWUPl9C
VrEviYsmgKOZfXsqeLcGUrYv4B9NpZ1202yeY15zVvbpF19fsnWPHS/xRw+7DdhfGYesFrG7pom4
cIl3C7I5aofEjtVZ3vwSYPzSGOQVuWQVmEhe9DCSdonTJ4/x7oEjqPowzHoZ7Zxnf9PUwesFtbHP
4+0XGjvHrPbn4x70cS05R62/qvM2zUnRS9mo4fHkLfJh45oKTtgiCVW7515v41fsld1s6s3+o3t8
oDwYufGSk/VyA5J6nBP1TcimdkrzcqlzSaQGGbznmK45a4h5T+AuBtg0HbOCdIyQJMxyK/teL0GK
WsEUs8zpPc1IpmkYJQn1OtuxVxHBg12/GxAxoPbkYZhPdM1zUn9zC08x30+e0xtCPOpOa/KcZ1RH
bfdY95KTNNfgdSkpPXLJEONM61Jw6i/PeJs79BrvdcptghvD/xEqGBiKo5Z1K1N5p95Om6ZyYmc5
VmlUnztiCwSCKzU+PYkbMphlcpG7JoVFC58k6cUitLELyNkUy0hgpHkCSyYbyF0Rz6pX9hI6cypG
QyDBRgmH9QLGiXFM5zjLF8SSsfMSyVvSeMgoez030jyNzRtjqCvLZO6CePIPOknMymZBqB6H9QKy
6eqyetkYiFl/iXUr1vOJ2vcGz7LegKw50YIWMqtjGeUI/ThSNz5J485s5i78GUXva6RuzeBRo4yf
cSLJq6bxbk4qS+PTcBijydkYS0CPvgYjZ08c9c1IhpDO/RFs9Xbkzs8FOr6XDQpBBsyTY5k/tpV1
T8aydGUWang0wb7uNxyeZP2fxp6bkVk6NyPrtqmq1f3/V36ndvmdNx2NnhRL8tJAitbEM2N2DFkH
VJI3JILtOBnp+TQqfdvCPc4Q5J6buw5RDm+66c8Ggqv4hy4kb8sKtJpyEp78GateKUczRpJTmMWP
zfpudvMW85784vsB3WPHm0172m2gfuJeQRqLrSyThDVFKPpA9L4GQo06Llq9+6X75cM08ranIjdV
khT/M5Y+s54dhxowR8VT0PGW0Ju/DUUvEx/p+/jfPrk65v583JM+riXnXNW5yrs5mZzQJpC6KprR
wZHMHws7dlYj9cqH3u8FXW3qzf7XIre3nOxnjiR11QJO5KWTsKYQgkMwGwIJ1nvPMV19f6h5TwBK
Uy2aHECwXgZJh1mnYXWYSFw6gRFX/nxtx54Q19uOvV+k9W3X0caBtTcc84muea6/uYWnmO8vz3nT
nbc803Oe5e23Q9Flz/aHGmdKl4JTf3lmMOO9XrlNcGP4p/m7T/7jVhbw7cWP3CKSaHzwZj75O4/h
aJUIDp9A3HOJHX92UyAQXI+Yq0hN5vSkZF5ZPG4Q5wTfbLMrvF32EVMS5jBSaENwA7lsa0KTTfh3
zFrPvJlG1ocBFGxfwUjhlwKR9wTCD8X4BDeEBW99eMvIcocwx0CRePSpFB59KkWoQiC4ITc1F41O
DbPZMLhzgm80n9V8hP6xh8VERnDDqdv5KkXOCRRsiUVSLOw+0EzoUvcKOOGXApH3BMIPxfgEtx+i
WCIQCG5JWhQ7NkViisl3UOcE32zGTJ7DGKEGwU0gYnkip1/JZ+mcCtCNYvqiRFLmhQi/FIi8JxB+
KMYnuE0Rn+EIBAKBQCAQCAQCgUAguOncSp/hiA1eBQKBQCAQCAQCgUAgEAi6IIolAoFAIBAIBAKB
QCAQCARdEMUSgUAgEAgEAsHg0FQuOlQh1zdBJ8JXh98uwtYCwW2BKJZcA22qwmXt9uj3Zo312yqn
YHj4oGA1P0+v7GdC42RLfCxbT9pvwgRNYeuKWLZUNQ1Xg7ydnsi06DlX/5sdy6biw7Tcoja6bDtL
eV4uz8XHMi16AT+NX83Wt6pvvLzDbgvBzY6nTw5u5yez5zBjdhzvWJUh5wCPeeRG545vko9qCoUv
prCjyTWsYxmwTYcq1/XUf8++Rc75Zvjqt8jWLYqF7emreWK2e37wk9jVFB48S9uw96RSviaWadFx
vDfogpFGRWoc06JjecemCP8UiGLJt7ZQotnJWJnKiY5Av2yt5Kcxq70/NAzgN4Ptd1APLUPs39NY
P1O1W9omgm87KnXnLmGeFNjP5MGOVfElIkh340WUZOYnrSdukmmYJmguGu0uIn6RwYG9uziw93cU
Z8Vi219EaY39lrPQ+fpdJK1I47Tqy5KkNHbuKiJ1eSR1ZVlkvHn2m20LwU2NpzbNzu6yjxifkMHO
8nymB+uHmAM855Ebnju+QT7apl6gzgahJt2wjWUwNh2yXNdR/736Fjnnm+Gr3xZbawqlL2Wy+8NP
MYY+zKzHHkZWm9nxShr5w1zEaVOdnLaqyIYQgvXyIOfqTursrUi+AYO+ViC4GYg/HTzkpKShdikW
yMYJpK7z/tA2kN8Mtt/BMOT+r6HPm2kTwS3ywFxTyKq8CyyJ8uXoSQuKZiBxQzzqoV3sq/kURRtF
ypY0fhysB1Q+eKuEop3Hcbg0zBOjSVm3gh/qJUDj1FuF7nOSgWUJC2i0wfSgUYDGmf3lFO05gtWh
EjxpDqnr4hktS6j2BlQ5ALNepk1zUpqTxb6TzWiSTMTMWFKT5uA3gDFsLG5lyWM+7DtUi0OBWUmp
rJwZAprKO2X5FO2vRmltxxj0MMlrk3k0WM/5k4VsLG4nr3AcG2LjGL8hl5hQfWchYd3mWtIL09BO
VvQpe6+HN9VOowNmhZrwk92TDL/wqUSYy7HZXDDJ5EUeie0rklGXpvFiVBAAFxv3suqlalIL08CD
DEPVWZtiIXdzBcEJaby8eGLncf+oJ9ksS+yzXnkj50V/NYWsy3OSU5LOaAnalLMkxeezbHsuU4yt
fcoleZBX6WKL/vr0aGvB8MT5EPV/JZ5e3uhiXUouttZ2pOJs9OZcVurxmDu65gDveaRHGaXHdZ5y
TL/jKdOYP9bFjoOfEr1sIh8d/YfX8eUVjuvHDzU+eKuQ0j3HcWg6ZiXEou4pJ/iFrM78cj3tNF7+
lKQVWdha27GtScNYmI2+qaT7OGPCOf7eHeQVjuO9gtUUNY2jeGs8kmond00qtrFxvL5qxtXcZjtG
0soeNpXxqFdQ+WB/Bbv3HKPO7iL0kYWsjAtmy+p/6ybXA3rNo1/0sk2nzCFUpMaR//GlbrobvyiN
bQlhA9fJuS45x8u9TeScQU30PMZhX37259FT+Nupd7366pK0zejr/vOa/OxWsHWbdok6q4pseJj0
Le575sXGw2S9XonadAmigtz6O1hO0c4jNNpdGIMmkLh2dcf8y9u5HrnR0YyttR1NcpK7IpY6uwtz
+GzSN6xgTMd8zVNbmuMCVmcrcvgEjHLHb6vKKSpz/1bWBTB9aTzJiyNBOUtSbBpMTqZg4wxU22GS
nnkVLWgBxYUrwFpJwr/kIz+SyG8zForwEFwXbruVJZetlfw8djWb0lfz09g44EtkMAAAIABJREFU
fr5iPRVdlth+UrWL52JjmRE9hxkL4tjyZjVtndetZ1NqIjNmx7J2zf+lznWJ3JUrKa93ojpqycop
vDohqa9k7cpEZkTP4Sex63mnx2+GKkfpS5nd+nU/8Bxj7Yo495K7eHdffdG7//Vsz0njpzExPLEg
ji1vfdznUr2++kRrZV9xlnu57II4tu6/usxvoPL0J4Onds7sz+KJBas5o6iAxjt5q/npyu3kp/Uh
p+Cm46hvRnFaUIIWUlCSzzKjk9w1WRAVz2/LC1lmdrHv/WYATr2ZTe4BFynbSziwt4jp8qdk5ezt
sHs+uQdcJG8tpHhTLHXFRVg1HaFmmU8O5pNRZmH+qiz2VOQzhQayCqoBsNVbkEzjMErQeLCQo84Q
it+uYE9JGtrJcooGsMTeUd+MrakWmxxJXmEpOUkhHN1z2C1zWTb5VRqp20s4dmQXcWNd5G97u6Pv
C0imEPQSmPVgdV5dsru7uJLQ5fFQU+RR9r4e3hQMXd6QaXxSVcEJh47pHW/GPcsjEWyScXQuRVbZ
9+u9mBfFIHmRYag6s57chVUKI3HexF7nRk9ayMqnpvWrP0d9c6ftABR7LapswGyUPMrl6XhXW/TX
pydbC4Ypzoeo/ys2NAVNY/O6aIymaMrermDlJJPX3NE1B3jLIz3pep23HNPfeBzWWmyGGRSXFzKx
xdHv+PRSPznnrVzyD7WSvKWQ4i3xOHbmc9QmEWyUb4id/IyRpCyfgHFsDDsrXuUBvdRrnOP+53Ln
WCIWxSJbj3G00c7RglzqpKmkJ83oJpefuQ+betHrqTezySqzMH9tJnt+l43ZeYTyM3f3ksubX3iW
WSImq5RjRyo5Vvk7kh8JQB8UTcryCYPSSbec048cIucMDG9x2Jefbfrlc/36anDdb67Zz24FW4+Q
RjE+WEZ1fsTGF7N4r96Of+gMtm1/lZcSIjvGk8WqVypQ9RNI/MVsJNtZcl8q4rzm/VxPFHsDCqCp
l9BPimZW+Chs9e+QW1bdbz+K/WMcgHlsIH7Amf25rHq5Aqs2ivmLFhAsu9j3eha5B5tA1qGXQXG5
0NCo2/k2DkDTWtE0lRM796KgY8nyqSI4BKJYMpyozk9RzQspLi8l54Vo3s3L5j2bymXbMbLyKpm+
LpfDRyopWDeN02WFnLCpHdc1oAbHUlaSy0tb/i/jdaNI2b6d2HBD97e/jmoy0kuQH4mlbO/vSJnr
S/7mXP78t6+vWY64TWnd+m1RzpLxUhHypFh27iohea6BovRMTg3gG0LV2YDDNIfi8gqKtyykrqyI
031c17NPd63kAo3aOPLKf0dOUiQnCvKpc6iDlseTDN7aeWBmIvODXeQXHOeTmnKKqtpJXBtPcmaa
R5sIbt5bIOs5J+ZH4kmMCmEE4NDaCZ65gphwE2gaDrUdvUlHi/IxpTvtLFubzANGmRGygemLotGa
amlTLBSV1TJ/1QoeMOvxD45k1iQDsvkH6FUL+QXVRCQlMjvchJ9sYvriqahNtYCK9ZwT46RARgCy
LKPaajl60oKkDyF9ey5x/fqKhs3qxPxYLInzJuIngaa2Isnu68YvXU3Z9hSCZbhoc+GeV/gCKrYm
J+bwAEYAZpOM45z7TeVnNeWcVkNYNknzIntvbDUW1PZmVj25sGPPkoUkvVzJlFWr+XHHw55neSSM
Y3Uo1ku0ARfrKznqMBE/5f94lWFoOgNrzQX0YyM7Cx3v5a3uttfK2jc/7kdet+8Yw922A3BYm8EY
hlGSPMrV93G5my289enN1oJrj3OGrP/u8dT14cRb7uiaA/CSR4xSz5VcXa876zVG+h3P5CdJXhzJ
SFka4Pg866HFUU1RWQNLXkjsHMOSuSHIxsCOt7Q3yE71F9CPDelYYdZznHSzlZ9xHMuidBS9nEZR
jUTqplj8+xC1q0299d+mNrFjTzPTVyXy41ATI40hJG/KIG7SqG5yefcL7zJf0dd7xdmUntORuimR
0bI0CJ1ctac2EDlEzumXtn7isG8/689X5Wv2s1vG1pKexC1ZJD4+AaX+OBlrVvBEfBrvNTo79Ve6
sxZJN4H0TcnEPrWSxHmBqE4Llk9PeTxn7TV/17DVNAM+LNmYxUtJ8aRsSMHs44OjyeK1H6tD7bw2
ONxAm9pEaXE1kk8A6VszWZO0gvRNyRhpp66qgRGSL0a9BKoTxXGWHVUdL2o0FcXWwO6TTowTFwzp
kz2BYKDclp/hSLofELc0Ej/AL3Qas4LK2XfIwo+XTyCnMAx/o542VUGTDMhSO4qqgQT4BLBk0QT8
9TJtqudihK3+GIpxKjmLpzFSAv+nUjBOcjGChmuXQ9/z4akSh/5hNi+f4e5rcRyNh1ayr+YCD83z
vqxP8g1k/swJ+EkgmcMwS3uxKa0wgLdTkk8AccujGa2XMU6eQ3BZNValFdk+OHk8yaDvp51lL6zg
9Mos1p2EiKRsfmyWaVPFapJbbnKjOWl0tBORFMYI3N+5Wh0wJSGw4/wlrIoP04N0qPbjKHIgEV1v
eu0uNCQU+1kUArvsHaChKhrGoHFozlqsra1Yc1I5kXfltIZsjqZNdVHngPHB7snImKhk0tUS8gvS
KC0IJHljKgvCpX7HUGdvJ2JVWMckWsNW70RvmgOawr6CbEqrmpGNBowGHcq5ZvRRC3v1bQwahVLj
okW1s7u4likJmcjOIx5l76O02PGgk8jmpEgkQNNUGg+Vk5+Tz/jCTB7Sax7lAdCbA+BQE4rqdK9s
WZqKTqn2KsNQdAagtrYi66XOB48pCWnsXNqOpjaTsTIXc7DBu/40J40OCA41dI6/scaOMcj9CZCf
B7lG9nF8VpB61Rb99OnR1oJhifOh6r97PHU8nDzifrBV7A0ec0fX6xT7MY95pGedoft1lZ5jZADj
Gb9qglsvAxyft98pTR+jyD/oNlbNpaEPCussMlxvO7n3TmoleGZAtxzZOc4euQ8kgiePQzuwl1mb
Mnmgz30KutvUW/+qrQGHpmPZ2Kv7Q/gZg/DTnOzuIpfqzS/6lbljFdJ+F4lbs3jIKA9OJ13aU+2V
/cohck7/KPbafu6XffiZ5vTqq8PhZ7eKrVtUFSQDsesyWZLk5OjOEvJ3HifrpVzMJZnIVz6daa0l
YWHXT1Z0uL743OO5XgtLNJW6JieSj4npV16gqi609nYkXwOKl340WmlsuoTko2O8SYeqVGNrbUcO
j2b8lWcPrRUN92MXyJh1vmhNlzi9pwIbBuY/7su7J1s5cWAXtnaJxOXT+v0sWCAQxZJBIss65C5v
kWS9jKq0Ahqn9+RTur8WVdIRHGxA1TQ02t1pWNahlwbwkGB3IckhXSZfMmOCZS5bG4ZFju43DxdK
03EWzXmn2/Hx9gHs+i35XJVRkpAk6KMLD0r0RX/lYsmd1NT2IcjjQYb+2vEzhzFrrI6ieplZkwJE
JN+iaMoFbKovszoeTlRHMw5tVOdnJKqtGQUdoUYZtcaFJslIXd5eNFadRQ6ahqY5QfJB6oiXNrWZ
o+dcmJMCkGhGb5pKTmEqoyX3decbLWAMQVWO4VBlQk06LjZWc9qpY9a8Ffx2XizvFWSSuzmf8eVp
jPYS15pyAYeqY/6VT1+6TIrP15Szo14ip7ycH+ol2lQL62ItGMMDUZXmzr7dhQoDHGqiruosjXIk
eZNMaOfwKHuvBx3VRZ2tldCkMEYbr0zoDejnzmDHW/lYlVaMTbs8ygMgGwKR1OM0ntzFCTWEnJkh
cK7aowxD1RmA0aDD0WThMtMYCYyQ9fjLcNlai4p7onS+psSjvJrixKHKzDf4uieCDgtHz7USOi/A
o1z/nPY4/3X5u72O35f1WKctztcUeunTs60FwxPnQ9V/13hqU53dHmxVxXPuUBVL53Vak8tjHhnR
8z7e5TrsnuO03/FoOpZ06GWg49OUWi9++DEgdY61TbPz7slmjItMvcZwvezUojqxKr4sM3UZV5dx
9sx9LcpZ8vMqkXUSdVUW2ib3lrVnscJbbtXaq0HSdRaH2hQLu/dYeGCmuZtc3vyiP5nP1+wio6Ca
WRuzWHBlnykvMvXUSdf21Pp+5BA5Z8B4u1/25WdaP746PH5282192XaYhGdeRTNFU1yYgr9sYPby
eE5X1XJCceFQNUIld94wP5ZI+vIJSGiornZknQ5Jq+U/PZwz9vhEsU29QKNNu1KrAsBacwwHEBEe
iCRd8NiPXu9in01F0ke694Ky9Xzo0Gg8dBiloy2Q0Bt1qB+fpXR/O+bJq5keXsu+Q9XsO9COfmwM
s0LFKizB9eX2/AxHdblXaVyp7NpV9CZfPqkqouhkO+kl5Rx+u5S8DbEDKo70TuY6NNXO1S4U3nlz
L5/+z9fDLofe4ItxbAwHjlS6v689UsmBXSVsTpgwIFmla9CjNEzyDKWd8zUV7DgnMT7YRVHBkVv2
z6aKN0Fn0fSBHRskut8Aozd1Lhd32M+CPgSjLKEPmoCs1LLvpIU2ND6pKif/oIsly6eiN4QgqZ9y
or6Jyw4L+ZtzqXNJjA8yoDdNQK9a2Fd1lhZV4YO3ckl6sQibpqE0NaAZf4BZltBaz1Kal88JqwLI
GIMMyLIvkqZypuZjLnrYHFixn0WVAzB2jOHKpHi8SYemtaNpGhoabaqT3Xn51LVCqMkXtWPsV8Yq
G0JAaaB0p4X5zy1kpIRX2XvlLaUZm+pLqEGmRVVpUVXOW89SlFeCYgxjitm7PO6CrAlJa6ao+CMi
lscwuh8ZhqozgPFLY5CtlWQVVHLeoXDRZuHtNwvZ+FIJqt69aaY3eTXVhYqGqmlcdlgoyivF1tqh
dw9yoTb2ebz9QmOnLbz16c3WguGJ86Hqv2s8aT0LkV5yR9cc4C2P9BpT1+u8xUh/4+mSAwY6Pm+/
05vGIasN7K5pokW1sy8vm6N2CO1YDdJfLhsOO6mOZlSuvjDpOc6uY2nTnBS9lI0aHk/elkS0morO
T5u7F3K629Rb/7IhEL1m5/Q5Oy2qndKcXPZZXfxTi62bXF79wovMl23HyNhcwfiENFZODroq4yB0
0rW9fuXwlHP6seftVyjxHIee/Kw/Xx0OPxsWW+O+p57vtHV//+7OSOM4Iky+qPYjJMQnszY1jV/E
J3PU2Yo+NJJQo8xI8wQiTL44Tu5l38la3t1ZRNKaFIpO2vH3cq5nYVNxWHC0t6O1N5P1Uhbb8zLI
eP0jJF0YcfNCvPaj2Sw4WtuRg9x7QcnmMMYbfFHqS1mXnsumNcls3PMpsuFhEjtWoxuDdEA7aruO
JUsnoNfrkGhHxYdZy+cwcgD6EQhEsWSwb8Fcn1JUvJfzipMP3irhqENmflQImtKKJPkiSxJtmsK7
ZSVYW1XUvlZbSBKy1I7VfomWHrFpDI/G6PiIoreOcVlVOHWwlNIDtUg+wyBHj37Nk+Yg246Q/9Yx
Lqoqn9XsJSE2mdLh3ODUy1h7MlzyeGunTW0iP+8I4xNSSN+wGqm+gtKTTYOSU3BjcNQ3IxlCOvet
sNXbkTuXi3d8SxwUggyMNE9j88YY6soymbsgnvyDThKzslkQqsfPHEnqqgWcyEsnYU0hBIdgNgQS
rJcYoR9H6sYnadyZzdyFP6PofY3UrRk8apQ7+nOv8ho9KZbkpYEUrYlnxuwYsg6oJG9IBNtxMtLz
aVT6dhqH1f0d/ZUxqHZL5yaj5smxzB/byronY1m6Mgs1PJpgX9+OsXb//l7WG5A1J1rQws43Id5k
7/3wVouj/RK5z8czd+GTzF34JMtXZmOTJpC3NYXRsnd5AEZIOsyyhqqfwLKOhwBvMgxVZ3TYM297
KnJTJUnxP2PpM+vZcagBc1Q8BR1vBr3JO9I8gSWTDeSuiGfVK3sJnTkVoyGQYKPkUa6Jj/R9/G+f
dNlo10uf3mwtGJ44H6r+u8aT0qMQ6S13dM0B3vJIT7pe5y1G+huPbLr6ecxAx+ftd37maaSvi8VW
lknCmiIUfSB6XwOhRh0Xrf3ksmGyk2wMxKy/xLoV6/lE1XqN8+pYVN7NyeSENoHUVdGMDo5k/ljY
sbO612byPW3qrX8/40SSV03j3ZxUlsan4TBGk7MxloAecnnzC88yw9GCEqytrRx9PbVzj6WfrCxE
HoROurbXnxyebN2fPW83PMchHv1M6sdXh8PPhsPWl63HyUrPp1FxFxL7+3fvebqB5K2ZLHt8Anqc
nP64Fpvqy5S5ieRsinUXFCQDyVvSmB4q8+6vi3i3vpX5v0gj9amJ3s/1zCPnLKj4smTDekK5wL4D
tchjp7J563p+KEte23I0nUUBgjv2BhohmUjesp5ZE3+AreYIRxtbGf9YDHnbUxlz5UWT0V1ANU5c
wJRgPZKvDgnQB0WzpOMzoH71IxBcA/80f/fJf9zKAr69+JFhbe+ytZKkNXsJDffldE0zsjmEuKQU
ZndsNJT/Ujb76i8g6wKYsigG6cNy1MdTSR7bTNKLx9hcktkRwBrv5KWRe8DC9A25JJo+JenFw/xn
xauA+6/h5OaVU2d3oTdNcP9pOam28zdDleOleYHd+n0xKojz9Yc7+rqE5DuKWcuTSV48sVc1+LK1
snv/Lx5mc0k2Y2SJNs1ORnwaoeuy+9gcte+x9rzWvC6bFeGGQcvjSQZP7RzNSabUHkbB1hWMlNx/
HWdjmYvNhWk4yjK76UYg6L96qvB22UdMSbjyhuLbS5vaRMaKTMyrMlkxySR0JhB8w7hsa0KTTfh3
PO2deTONrA8DKNi+gpEiLsW9SSAQCL4FLHjrQ1EsuanFki4P6DdtwnOLyCEQ3O58drISh+FhHv2W
76Z+0dbEiZ35vKtOIy9j4TVtiHa76EwguNV4LyeZIucECrbEIikWstZkIy1N46V5ISIuxb1JIBAI
vhXcSsWSO4Q5BALB7cyYyXMYcxuMM2tNKopxAqmb5lzzzvG3i84EgluNiOWJnH4ln6VzKkA3iumL
Eknp+LZfxKW4NwkEAoFgeBHFEoFAILgN2FZRIZQgEHzD8TOO48WtRbwoVCEQCAQCwXXntvsMRyAQ
CAQCgUAgEAgEAsGtx630Gc7/EeYQCAQCgUAgEAgEAoFAILiKKJYIBAKBQCAQCAQCgUAgEHRBFEsE
AoFAIBB8M9EUtq6IZUtVk9CFQCAQCASCYUVs8CoQCAQCgeCbiSQzP2k9cpBJ6EIgEAgEAsGwIool
AoHgunK+ppB1BReICIK6eguqHELKpvU8apY5X1PIxjKN+WNd7Dj4KUsyNmO2HqBo53EcLg3zxGhS
1q3gh3oJUPlgfwW79xyjzu4i9JGFpK6LZbQMZ/aXU7TnCFaHSvCkOaSui2e0LNGmOSnNyWLfyWY0
SSZiZiypSXOQPBz3Qxt0W37CxAKBl/jU+OCtkj5jekNsHOM35BITqnfnivpdrNtcS/r2VGwHCina
X43S2o4x6GGS1ybzaLC+V86Ijgnn+Ht3kFc4DjSVd8ryPV9X3MqSx3zYd6gWhwKzklJZOTNkSLlF
IBAIBALBtx/xGY6Atq9auNwu9CC4Pjjqm1EcTkKXrua3FeUkTlLJ31bZec5hrcVmmEFxeSHBjb8h
94CLlO0lHNhbxHT5U7Jy9gJw6s1sssoszF+byZ7fZWN2HqHooIVPDuaTUWZh/qos9lTkM4UGsgqq
AWg8WMhRZwjFb1ewpyQN7WQ5RSftHo8PpS2BQOA5Pk+9me0xps16sDpd7gY0hd3FlYQuj0c9kEt+
lUbq9hKOHdlF3FgX+dve7jNnjPufy0imEPQSnCrL9nqdrakWmxxJXmEpOUkhHN1zeMi5RSAQCAQC
gSiWCPosLlzk+V9u5U1bC5dtp1nwQuEtJ+NA5Wpr/wsbM3/D+xdbBtx27LObiIhL6/bf9Bf+nTcb
/nLd9NyTli8/IyYujSlJv6bhq+6VnssXz7IgLo0FWR8KZ73paNjOOQldHM/sYD0gMX7yOHBY3Oes
TsyTnyR5cSSSZqF0p51la5N5wCgzQjYwfVE0WlMtbWoTO/Y0M31VIj8ONTHSGELypgxi728hv6Ca
iKREZoeb8JNNTF88FbWpFgBZllFttRw9aUHSh5C+PZe4cEOfx5eZ/zKktgSC2/6e6CE+n7z/sseY
BjCbZBznLgHwWU05p9UQ4maGMH7pasq2pxAsw0WbCw0A3145Y6QMtiYn5vAARkD/1z0WS+K8ifhJ
oKmtSLJhyLlFIBAIBALBtx/xGc41It87hvQE/2+uXO1f0/LV14Ns/U6Wpz7Ds0H3uB+Hv1I5dqiS
rNfKGJmRxOP+37kxg/QBvrrA4aa/Ehb23c7Df/rDGS4C/sI9b/5DlOak0QERvwjsPKaqLjTcn7XU
2dsZv2oCIwDF3oAiBxIRrO/in+7fqrYGHJqOZWOv7kvgZwxC5zyOtbUVa04qJ/Ku1Gc0ZHM0AGOi
kklXS8gvSKO0IJDkjaksCJcY2cfxCOqH1JZAcLvjKT5HOY97jGkAY9AolBoXLaqd3cW1TEnIZDQK
FQXZlFY1IxsNGA06lHPN6KMW9soZbaqLOgeMDzaAprCvn+siVoUxwh3Y2Oqd6E1zhpxbBAKBQCAQ
iGLJt5LPLafJrajmD01fIN97H8kJi5gbouPzhtNk7ajiDxdV9P4BPL1sPk+FuR+5P2/4kKwdH/DH
L77mRw+NpaVjMYP6xWdkFJ/h7W0ruGw7zb+81kBkyB0ca7hAS/udTFs4n9THxzAC3O1XfMAfL/6d
Hz0YhmT7jPuffobkEF2PAkYLb+7Yw69OWFG5kx+FPUBqwgxGfnGGf3ntDPeb4Y82Femue1i0cD5P
Pfjdzr7v91c5Zvk7y372EAf3fNqvXL96bQd/+PKv/CGzAHVNIk/3lMVDkcLP5w5G+PgAMOJuHTOe
mMqeqjL++MXfedz/O/x301my3jjMR7a/ove/j+Sn3ToGaDh1nFcrqvnTFyrcdQ8znphD6hNjO3TU
t577luMeIsPupPbEn2kL+657Etzu4tgplYfD7uV8l2s92ban3p5dk8gMH7tH2QWDQ1MuYFVgvORz
5Qh1By3ow2PQlAs4NB1Lgty6VRUXmiRztfyg0Vh1FjloGlq7BpIOfcfJNsXC7j0WfvCj/0VvmkpO
YSqjJfc15xstYAzhYmM1p506Zs1bwW/nxfJeQSa5m/P557TH+a/L3+19fP3oQbc1vjyN0ZIomAhu
8zj3EJ+mf77sMaYB9GYDHGqiruosjXIkeZNMnK/Zzo56iZzycn6ol2hTLayLtWAMD+wjZzTjUGVC
TTrO1xR6v07VMd/Ukcc1F432VoJnBqC12wedWwQCgUAgENwe3Haf4bR8cY4Nrx3G78EodhWsIzXq
TnJf38OZ5gY2vF6F/5TZ7N2WQmqUP2+8vuP/Z+/u46Iq88f/v3ZjDjoMAQPGjB8ZDfCOxLzFvCkX
vAnNRT+a5WqbWIarUblYLn5X3d+qrWRJVmQb2Uftk2yFuUaWZoZpqImmJIZoiDr4cQbldmdEmcHd
3x+DCAgzA9iu2vv5eNAjZ85c5zrv6+ac65pzrmGL0YLFdIw/rtlHl9ET+eiVJxjMBX6svNxM+qcx
6SN4/5U/8v68wRza/Dn7Si7VpvENXSLH8tErcQxXmfjWZG16Mid3J+tzPfjra4v56pUn6FZ5jJSd
p2vTP4tFP5j3X5nHa9P7smX9R2w3Xarbt8UQyUfL43iok9qtfD317FT6+fjyh0Vz3JsoaZKdfTv3
cdquoZ++HZbKUyx8fSve4ZFsfi2BhEg/Ul5PY1/JJUpNR1iy/gCjZsaRtW4p/zMznH2bP2eX6VKL
4gygAL0GhWPLz+VE7aM4paYfOaEKYri+3bVjNx1rtmwbx210QEWzeRctV1Z0BLP9PJlbvqPUZuXw
F2+TdsyLuMcHU1Z0BKs2GF3tYonakP5oyr4jY08+1dj4YecGUr4o5+HHH0ATGIzWVkT2sSIs1iLW
rUgmo6Cc/+oWgdaaT8bOI1isZXzzcTJzFqRitNmwXTzCulUpZBWUARp0IYFoNF5gzWvy9Q6dWp6W
go3DBw5yxmqrPWKri38Lcftprn12vGdgs23a8bkeUJbLug/yiZk9AX8FbDY7NpsNGzaqrcVsXJVC
zkUIC/K6rs+wFh3BVvtvl5/TdEKn1Tj6fGsxBWVe9Anya1Xf4rqdS7sXQgghZLLkFnQ6P5fSgHAS
Rvemo9qbXz00kb/Oi8FacASrvi8JD/Wmo48fvxo9hukhsGW/mdMnc7EGhPN0ZFc6+uiZMnksvXza
NZm+p1rHxGGheKvAX383nVU1nKm8zNFD2Vj1A3k6sicdfTowcWoM/ZpJQ1G3w1ZpZlNWLia7L4mL
5vH6Q10d6ft04qmHeuINdAwJZ5zhMpuyzjo+qArgN6O70jHAD43KvXy1bm7kMm8uTa63ZskSluws
56nZj/CrgPaczj3AOZ+eJEzoR0cfP0aPHsXoACubckvwD+jKa0vi+E0PP6qrLFSrfPFW1VBaVdOi
OF/lr+9Kf58KvsyvACA3Kxf/QT3xV127aepE7qFmy7Zx3Erym8+7aDlzwVl0A2KJYjePj5/Gkg/O
E798EYN0GswFZ9EEhdd9o+tvGM6yhZPJeW8p48bPIOWLYuKSXmJ8mBZv3QDi5w5n24pEpsxYhFk3
khULp6HX9iZx4SPkffAS4yY8RurXNhJXLuF+nYbOA6cRPyWY1HkzGDVmMklbrMT/MY4BQ5p+vbOu
5Wkpxt0kLU4hr8wx8Vla4PzfQtyOmmufoU7aNIBGG4jGVowtZALRYY71fwxDpxHT8yLzH5nGlGeS
sN47klAvr7r+pH6fYfz+bN3irq4+pwT1QFf7OWtRPlZNIAad0qq+xVU7l3YvhBBC3B5+do/hWE0W
PNWd6k0mtKeboT2nd1rRBPSsd7uwCv8ADZYSC6VV5Wh8Qq+9p26HXt1M6FQe19JWeeCpAuxgMVnR
BFy7HdlT1Q69T9NpdOwRycvT2/HOZ1/yWNrf0ei7kDBzIoNVoFFr8FbYDEefAAAgAElEQVRdmwnx
9mmHpfJS7YSIpsEkgTv5am21mfLsE0wxaDAZf+TN9TvRR0YxsZ/jkaVSk4UyYy5jnjrQ4FP9TFbA
l33bM3hnZwFWlYZuBl8s9hps1FB6sgVxvjqxpNIwalAAyVmnsPSAXfk1jJqtwzPr2jalpubLtnHc
nOddtIxjXQDdwMmMn/QI4+c2fHfQb5YyqNEnOg+cwFtrJzSZ2j2RM/jfyBnXvd753rG8tXZsE5/Q
MOI3CYz4TcJ17zT3esvTGsuHW69t7x/q/N9C3K6abZ9O2rSnpgdvffJJw9eUQGYtSWFWvddm/br2
86EN+4z757zE/XUnAxef+8211/X3PsKHGx5pdd/iqp1LuxdCCCFksuSW5K/3pjq3BKud2gkDC1u2
53LJ1xOrsQQb1C4AdwmTyYq3oT3eAe0avme/TKmTRVE9m3jNW6/BmmutS6PafpnSyhr8m9jWUlKC
d0hf/rr8AaqrytmUlkbK+m8YPFOHtcpKaZWdLj4qoIbTpsv492sPuL5LxPNGBVHlgb+Pho4BfnQM
iGCZD8xOSiPJ5wn+NCwI/4B26EPu5/1Fo/G+ekyV5aDWkLv/77x5qIaXl8+nf0B7qitP8cSCj2pj
1LI4X63C3fr1hZ0H2JVfwRn13cTr23GiQZm3w7q/6bKFhr+04yzvoqVzJeXkFdswGOQXY4QQQggh
hBC3lp/dYzj6Hn3pWHKMlO1HKK2ysC/rS97Z+SOh4feimA6TvP0I5yotfL39S/52soZRgzrRrV8E
/iWHeXP7Mc5VXmBT+nYOtfARll79+qIY9/HmzqtpfM63zaRxOvcbfpf0EV8by0HdDn91OzzVjl+e
qa48y5vp+zhdWc7X27/ky5J2TBzUqU0TH96qGn40VdQtpvrj9wf5wez+nRQdQyJInNCFL9dv4mvT
JbqER6C5GsuqS5zI3ctjz6/mnfwKbJWXUFTt8VZ5UG23sGXzdn6suozFTqvj7K2/m/4+FaSkHabz
sJ740/AZpG7hfZst28ac5R3gRP6P5NZbv8TVv3/OLGVFGMsUwoK8JBhCCCGEEEIImSy5mXkHdGXx
s5GYsrYyZs4K/rzdwtOzY+gb3JeXZ0di2rmVCc8l82rWBabPfpxJId54B/Rk2exRnM76nEeeT2VX
VQfuC2jZnQbe+t68OHMwuZ9tYsJzqXxZ5UdXn3Z4q67fNnzYGJ7u58GSpcncH7uC9UY/Fs8cCICn
OgB91TGeeP51Xs26wFOzp/KrgNb/VK+nypfh4QFseet/SD5kAiBtxUuk7SlsUTqDR8cwTn+ZV9fv
xObTlRefHYVp55dMmPMXnnhrH4MnP8LT4R3oFTmaX/mYeOy5JYx5/n84GjCQiSEax50erY6zN8OH
6bBWahgdHtBk7Jsr26bqR3N5B1i/5iPeO2Su297Vv3/OvHUDePeTVEbo5K4cIYQQQgghxK3lFzEb
9/zrZs7gJ5OG3BaBrq68wJmqdnTTOwbo1VVFPLcggymLnnB7sqPUmM0TKw/z8vIn6KZWSe0VQggh
hBBCCHHbGP/x3psmL7+U4vj3KC35kWeX/g9b8i9Qbb/Ers8yOaHypYtPewmOEEIIIYQQQghxE/GQ
EPx7dAwZSOJDZl59fTVLqjzo2qMri58dQxe5QUQIIYQQQgghhLipyGM4QgghhBBCCCGE+I+Tx3CE
EEIIIYQQQgghblIyWSKEEEIIIYQQQghRj0yWCCGEEEIIIYQQQtQjkyVCCCGEEEIIIYQQ9chkiRBC
CCGEEEIIIUQ9MlkihBBCCCGEEEIIUY9MlgghhBBCCCGEEELUI5MlQgghhBBCCCGEEPXIZIkQQggh
hBBCCCFEPTJZIoQQQgghhBBCCFGPTJYIIYQQQgghhBBC1COTJUIIIYQQQgghhBD1yGSJEEIIIYQQ
QgghRD0yWSKEEEIIIYQQQghRj0yWCCGEEEIIIYQQQtQjkyVCCCGEEEIIIYQQ9chkiRBCCCGEEEII
IUQ9MlkihBBCCCGEEEIIUY9MlgghhBBCCCGEEELUI5MlQgghhBBCCCGEEPXIZIkQooHnxo9n+MhY
vjFbm93myTHjGTX5D7dnAGxlfLUmmSdnxDJq5FgenfUHVq7ZzI9O4iFEUyxlB/ntmGlsyCt2va15
H78dM430grIG/3/THIvZcSzpeWUu838jzB4znuEjxzb8GzOZF1Z8hMl2bbtqaxHpq5J4cto0ho8c
y6jxsbyw6iPOWG0N+qvGaT06YxFfuSiXxv3c7dLvVZfl88dZizhcZqv990neWPx7Ro0cy0PT4ln5
8T4sraojN0e9rbYVsfyZP/CVUfpsIYQQbSOTJUKIFtNoFDQav9vuuKqtJ/nzM8+Q9PERQodOYPGf
F/HwwE7k7VzLnFmJbL2JBq/i5qcoQTw8aTxhWi8JRitpA+9CF3gXukA/sF8ke/s6Fq7aRTUAVjYu
W0TKlt0UFFvR+vnBxfNkb1nH3AVvN5hUAdD4+aH180MBzEXfseTZeN4+UPQz6/dsZK55G341mb5a
BWxlrHtxKduKNCQsTyJxSjjZa5JI/jT/lj1CTyWIhyd2Im11OqXShIQQQrSBh4RACNFSr6Wn34ZH
ZSNz9atkme9i2dqlDNJpHC8PHUzM44+Q8kwCKS+vo88bCegVqQPCjUGbJpDxMx+RQLSSoupE4hsp
DNI6Gpzp+4+YOW8d5u/3UWYbjqYsn20Hz6N4dWfF2qX01WqwGPcxZ1YSxmO7ySqYxuQwbV1ay95O
qZ0gsLJ19VKStuSSsSadmHvda9O3Q79nMe5j4wGIm9kDgFJzLpl5dmJX/p4xYVqgN7aTuaRs2UXp
r3vgf4sep2HgBHRrFrEtbyzTwgKlMQkhhGgVmSwRQrTYk2PGY9T04Mv0lwDHrfAbV6eycc8Ryi6C
oedg4l+IY5DBMVCxlOWTuiKFbQcLwesuIh58hISZY/FXoLrsCDOnLaJMN5y40bBx0z6MVoiInEbi
3An4K46JjMNfbCDlvc8pKL4IKi/6DB1LwtxpdNYoLvcB8MniWJL3nufh5Wt5ZuD1F8/VZfls3FlE
n5n1JkquDnqVQKbOGU/mvHQyC4qJ0RUxd0YKYb/uT97ObzFbIWzgA8TOmcY9Wk1dTNatSiFjTy5W
HPmNnzuNrhoFS9lB5s5IJWLmYHI27SCvqBxdyH3E/zGe+2tj1ngi5/Cna0l+73OM5Xa0gcFEPx5H
7IO98QQs5nxSV79N5oHjdfu6GhuLeR9zZqQQ88YbTA51pH1mzxvMWVHIZ5+8isV8kDmzUon4dTCZ
H+9GCRvPhytnYSnLZ93qDWQdOILZptAncjKJcyag1yhOj82tAZuTtJ0ey9W4Pd6fnE27ySu2EjZg
LPFzR5K1OoWMA8dBE0zs/D8weWBQi7d3WW4tjJXGdoQ5014lemUy08ICKS3YRcpb6WTnFWK1gy6k
P3Ev/J4RodpmY7V1WRypxf1Z88asuoHrD18ksfA9G6vWLqZzvZC7KmtX9cid/BXsTWf2izvIK4aw
AQ+QMH8WXbXXl7urOrLhmWlsZCR/f2OG2/2OzVqODdBo/VAUUBQFRaXCdvE82d+fJSyyB96GwaxY
uRTjRRu6Ru342iyMhqiZM9i28w/knPyOHHMZeoP2tuz3GsvZshmrYTBhtWXmbxjO6rU90Oi09bsb
x39sgOJ++20cbWf1qa111VX98tQEMuxeDWkf7OPhJRPwlNO2EEKIVpDHcIQQbVTGuj8lkrr9O6z4
ERqkwXhsN0sWvMqPVhvVtiKSn1lExsFCtD3DMWgukrUphfmrvqy9ld7BWrSD1C1F9Il8gFDFRvb2
VFJ2Om4FN+V9zsKX0zHSiZhxY4gwKOR8nc7CVTuoBrf34fQozPmY7QqhoU1/C6kN6Y3By0bOMcc6
B7aL59n2xVmm/jGZD9YuwWD9joUL1jpu/beVkbogkW3FfsQvSea9NxahK9/F/AVrKa19NMB28SwZ
H+Tz8NwlbPnobYZpCkl+cUPd+w0HHTtIWr2P6LlL+eCjtSSM68TGVclkGa1gKyblT4vILNIQO38J
K+ZOxnZsM3Pr7cvlIPTiWbbtLCdu4SISHh/rSHPeIjKLvUhYnszqJXHY9mxg4epdVLtxbM535ixt
18diu3iWjE1niV3+BpveXwTHPmfOjESs9z7CmvT3iRsI61at5Uxrtnez3NyNla3R5EHSgmSMfg+w
6u21vPfXJPoohSS/uO66x0Xq6/PrkVCwj5y69ResZG3JRTd0VIOJEnc4q0fu5M9mLyfz432EToxn
1Z9noBTtZv6Ct68vdzfiGDZuMlPH9XdeVexnSXomjkenxfLo5Mk8/qdPwK87CS9Mxh/w1AYTPTQQ
KCftxQRGj5nGc4uTybmo0GfgADprmw+Qp3IXBp0CWDGW238e/Z6tmKwD5zEM6YF3vZf9dYG1ExBl
fPPpWlJ3FtFn3KimJ1x+4vruXp/nTh+kEDa0O2XH9mG02uQ0LYQQolXkzhIhRJuY8naT8X05mqCR
rHk7Ab1i5ZMVyWTbArFabRhPbiaz+CKho3/PqrnDUWzFJD2TQNbOT8ibOZywupT8iF++lDEGDYcD
zzP3re8wHyuGB3tgLS7ECuh0wUSNe4SwmY+Qd6wYbUgwnsCPB5zvo69WYfzCFKJsoGg0zUwYlGNT
eWHwa2Z9CcULjQLW4ouAClQqoufEMSIsEAgkdu4MsmekkFUwjWH2HWQWeJG4Nr7uLpW42dPIeWYd
mQWTidY5khw2M44R94YAED2xNxkrCjHbbPgrSqO8FWMFtH6B6LWB6H8Tz+p7z6LVaTjz/QayjH4k
rv0D9+s0wABCe/oxZ1YqG49NYKqbd6BHPB7HmKGOvJi+/4gssxcJb8czyKABQkhcaCfLqKHomPNj
u/rYQ7P15diuZtM++f1m58cSdDWvsbXf3isMC9Vgtj5A7KTB+AMRD/Yndec+yqw2tLRse6XIRblp
WxarBkM0m41hU2YR9uDI2m+/A5k65T6yVhRitdlo5h4ItD0HE6ZNZ9uBQkYYemMx55JVoOLh57q3
uK06q0dYi93In4phcxOZ96DjEQ5DIMx8ZgOZBdPqYuMoY9d1pO+DE+jrzpRE8fmGx1B+lqwDhUQY
tHiiYfL8pSjat1n36beU2cvJ2buDnL07SBsSy6qFjzR7hwWKgk5RgIuYy6xA4G3Z79FgAqOYArOV
MJ1fk5MgSbPiySy+iCboPmIGdmpx+70R9d2dumo69pFbfZDiF4Ri/Y6CMitdNVo5WQshhPj5TpaM
/3ivlKa4KX0yachtfXzW4nysgCEkHMe1uYbx8xczvvb9/VvOAlCw/VXGbX+13ifLMVuthNVeNSuq
uzDUXtxrtI6LeWvtN4K6ng8Q5rWLvO+3Mvd3W1G87iJi6FhiQ4IdA6pjzveBVguKBm8n38QrXn4o
9ot1+2zi6p0yK2gDvQAbKH6EBV0bdCiaTug0NvKKygmz5VNmP8v8x65fr6KguBx0gMoLg/bakEGj
8UOxFWJrcsA8luiwXSQ9O4OUwGAiBj5AzMSRdFXAaDwLumBC66el64FBA0ZjuVtjQEXl1eCRhTJj
PmiCar95d+g8cCydB8IPn37p/NhcTJY4S/vwx587P5YgR9yu5VVB46VCUQVdG3ypHAt42q5GsgXb
lxldlJu2ZbGylB2se81TG0L0gxqyd35OxrF8jEWF5B07C6pgnH3v7akEET20E8nbHWtIGPd8iVXX
mwhDywd/zuoRbuRP8fIjIuSuemXTHYNidTwiom1Yxm2pI9fqZSeWbahds8Rm48fvP2fhglS2vfUq
fe59gzGhWlACGT9nMePn2Pjx++/I/OJzMrZ/h3HvOpI/7cGLk3o3055tmG02QIVWo7l9+70Gh3wR
Kwo6vyY6QiWQxLUbiDMeIW1NCvOfWcqqtUu5p9GjdU7ru3lfm+u7O3X1Bzfrl0YbiMJFyqx2hBBC
iJ/1ZIkQ4j/M1nAgQu3dETab442w0XHEj+tRbyMVOp0WrGdrJxs0XL0uVxRVg6S9dQNY8XYy2zZ9
wrY9+ygoPk/W9nXkfF/I6rWJrvfhzsW5rkftYzZnm7w7ouzkEcx2hajQQKCoyQDYbDZqR94oXuEs
WxmPodFgQ6MNBOtBQAGVe6H1VAJ5ZmUqMXlHyPp6N5l70pm7JZ24lSmE2VpePjabvdGARUGrupYZ
RVEAu5OJJSfH5moA7Cxtt45FQaNqnOaN297psZUdbHGsrrKUHWHhrEUUaHoQNbQ/MUPHMtW6g4Wr
Cl1+Nmz0WJRPN5BtLCJv+3FCR//B+YKkzZS1s3oUE1TsXv4aB09RmoxnW+pIMxWHrgNHMqxnOhuP
lZN9spyw8h0krdmNduA0Fs8cTNd7HX99gv7A/HdzMX5fDJOaTq7aVo65zAZoMPipfjb9noKC0kzH
46ko6EMHEDd3Ftkzksg8Vs49jdZ3uuH1vRV1tU8L6peCrMYthBCi9WTNEiFEm2gCe6AByk7urn02
vIw35s1g+MhpbPi+GF1Px7MTZcXlGMJ6EGpQkfHeBjK+zsXdcf6ZA1+y7oPPUQZO5t0N6Wx5P4kw
LxW2skLMVqt7+7BZsVitza5h4qntQczQILLfS+Ubs7XhwMpaxLrV6RA0mKietRfjtnJyisrrtrGa
j2O0aQgL8kNrCEKxnaUML/S6QPS6QDS2QlJXryWnUdpuHf/3X/LG3/ahDRvAtDkJvLvhbR4Ogcwv
8tGGdgJzIQVl1np5ycdoBYPBDxQVYKPMfm2AYz5Z7HRiQqMLBmsRRvO1jc7seYPfzkjikr5jm47N
WdqXO3d0fiw/sdaUm7PjKbLV1L1m3LOZPFswK95YyryZjzBiaG8oKnYrX/6G/kQY7GRs+ZwcsxfR
Q4ObmVBwXtbO6pFb+bNddHxzf7Vsys5itiqEBnq1OY7usJjzyTNaaycDNCheCsaThWR/vJbMvOLa
tlpM9sGztWWjaXaGI/vTDWSX29GG3Nequ3RumX6vfvXQ+KFgw3zxWv0wff8Rj46PY6vxWrnYrFZs
KOi8VC2r7/YW1Pc21FV365djQWAVOo38dLcQQojWkTtLhBBNOE/SM7NIqfdNp6IJJP7Pi677pRh9
6ANE90xn47HvmDlhGjo/G+ZyOxq//kSE+GEIGU+E3y6yv09nyowjGDhPXlE5BqU/Gre/9DvLti1b
sX7xLdmR96GxFpJ30Y42JByDRoN2oOt9fLIs3umv4YBC1Jzfk30ykSUz4omeNIGIewOxGvPJ2LSZ
grJAEt6IRa+ABcBuJ3PVS2isM4jQFJO2ZgOEjiTKoMWfsUQZPid5wVLKZk6jj87OxtXJZFvDidUq
0ML1BhXK2fZuOlZFYerQYKwn95FtthE6LpDO9/YgQreDpAUvUTZzMjpbIWlrNmDVDSamZyDeQKgW
tq1eS9icCdiMu0j9NB+U4Gb3p+85nChDOikvp6J5bjxK8XHWrdqBZmgC4b17EGX4ovljAw5/sZkC
gpn8YO8Wpd1vQA8idJnNHgvWop+01ut7uig3a8tiFah41Gs/Grh4nJzvC9H19CPvwGaSP8gFVSds
ruqDoiVqdHcy3tqKtud4+hiangTw1gQ5LWtn9cid/NnsF9m2egNRy+PR2fJJfTkV7h1PVKgWzC2I
o4s6UjfYtZ9lyaw4Rxu22Skrr/01nMD7iArxQ688QMyAzaQdPEvSszNIVqmw1Q6+FVUnHh4X3iCt
hbVpWcvO43gyw4uH5zzSqp8Cv1X6vQYTwspdhOkUjAVFUNsHakP6Y9BsIPXlVDQzx6KU5ZP23gYw
PMCwJn6lyWl9V7lf39tSV/U9e7isXwBlRflYNUF1jzkJIYQQLSV3lgghmmQtL8dcfL7uz3jyLE0u
56FoiVuexNRfhaNRXcRcDoZ7H2Dxyt/TVaPgqQlh8RsvETOgO5iPk1dko8+vYlk2f2yDX2RwpvPA
Gaz4YyxhOsjavpVtB84SNmQMy5bPQK9wQ/YBjnT+9EYKiXPGUnZsB0mLk1i35QihkTNYtTbZsUbC
VSovIh4MJ+eDZBau2ozm3smsWj7DsaCkEkj88iQevlchbdVi5sxLwug3mGUrE+p+8rNFA7N7J7Ds
uZHkfZDM44/NYP7qz+nz+CISf90DlEASVi4lOshK6rLE2ryMZdXKeMcgUAkk7o/xhJLPwnl/YN32
cmLnTsDp+KE2/1F+RSx55hnmLluLMnQGi+cMx9ONY8vekk7alvxWpe30WH5qrSk3J8dT/xNdh8YS
Py6YtGUJTHwknrSdNhJW/h4dF8kzl7vMWujQUeiAPuOG1/2EcFN5cVbWzuqRO/lTvO5i2ECFpGdm
MGXWS5gDR7Ji4YTr25gbcczbkk7alu/c6Idq+6Byx10Cofc+wOLl8Y5FQxUtsQtfImHiA+j8vGon
ShzbJK5cyohGk0pX03L8jG048X9OYtq9rX0s6Bbs9xQtEUM7YTxY6Jjwre3zEpcvIkIpZMm8BOav
SIeQsaxYOavpNnej6nsb6qp77dRGwYFCdPcOvu5RHSGEEMJdv4jZuOdfN3MG3V0cUxZ4Fbd6HRa3
DkvZQeZMe5XolclMCwuUgDSOj3EXyZvgT3OHSzBukNK8zcz50y4S337pul85EcLttmk+yPx565i6
Mqn2F6duT9XWkyyc9RLD/pzE+FD5JRwhhLiV3EzjermzRAghxA2VvWUfYZE9JBA3ZNBXxDc7vyTl
tXQ0A8cSJhMlog28dQOIjfRj28782/o4jQc+x3bvZKJlokQIIUQbyGSJEEKIG2rEnEQm3yt33NwI
1rJCUlekUKD0J3HOcDwlJKKN+kyJRdn7CYfLbLfl8VXbiti46SwPPz5Y2osQQog2+Vk+hjPxgQFM
79D0t3O2K1X8Zev3HK7+KcPyC349tD+TVOeJ/doIwLJf34f9eB5/PvEPqZW3GXkMRwghhBBCCCFu
7Lj+p/az/TUcm+0i246XcP6f/2z4xhUbp+z//vmjUyWV2KtqpHUIIYQQQgghhBD/YT/fyZLqi3xa
8H+c/+fNkZ939x2T2iiEEEIIIYQQQtwEPCQEzVsx4T7Kj+axvODqozFNPz5TcfRHzut0RAX64HXF
xqEzRbx1tJiK2okY1S89iQoLIrqTlk6qGvaf+T/K72i4r8aP4biTLr/05MGr6bb7J0fP/B/fXtHy
uK6aadsLpACFEEIIIYQQQohW+Pku8PrLO7hL7dnoT4WqFUnd368r3WwWXtudwyvHyujVNYTnQu+s
ffcOogfdw5zuAVy8YGbNsTLu7nw3MR2UNqf760E9HemWnWfN0RJ8O3VmTlcfqdVCCCGEEEIIIUQb
/GzvLNF4+fPig/6NXq1hzc7DfFpmb1Fa5RfOsfw7IxcBys7wRSctUR194cQ/8PXRMqljO745dIRX
TlkByCwq48XRYdzV5nTVDdM9U8KfRvfibqnXQgghhBBCCCFEq/181yy5bGHN9+eouFJ/Mdd/csrS
8kVWz1dYHRMatWkUV/8T1I7Q+nn74cdlvr1wqW4Le7WFb8psTFK1Pt27fP3wunKZb4rrpWu/SOaF
yzzpKxVbtNKsWRIDIYQQQgghxI319tu3XJZ/vpMl9kscPlfa8gVe77j+pYuXG0+wXEvUq90d2K78
kwp7/R39i/LLV3D1zI/TdD3vAK5Q3ijdi5evSEMUbbN4scRACCGEEEIIcWMsWXJLZvuXUnJOXAGl
QYQ8uEvVspBdvHwF5Y5f4tvgc7/Aq90dbcpaRdUV4A78bnC6QgghhBBCCCHEz51Mljhx8Z/g6+tZ
dwOIl9qL7uqWhex8RSnFtON+nVfdayqVF/f7Km3KW3lFOeV3KNwf2L5euu25v0M7KTghhBBCCCGE
EKIN5KeDnfi27DJzgu7mucseHLL8kqiuev7rjl/SkuVfL1rL+OD0RZ67N4wVWjNflf2TEaE6urf7
JeUXW5+3CmsJHxf9F3P69cK3wzm+KYMRoR3p3u6XWO1SdkIIIYQQQgghRGvJnSVOZB48Qca5S/QN
vpsnwzrwf4WFvFtoaWEq/yLzcB6v5Z5Hpb2Lmb3uory4iDVFVW3M3b/44uAPrC4s567AjszpdRcX
i4vIuGDDfqVGCk8IIYQQQgghhGilX8Rs3POvmzmDn0wa4tZ24z/e+7MqOJWqPYMC23OquJz/s18t
QhWzR/Sll+UUT2dfkNp9i9Xhm8KsWbLAqxBCCCGEEOLGWbLE7V/DuZnG9fIYzq3ql3cQ07cbd1nK
eO/4ecr/+Uv6df4von1h/ff/kPgIIYQQQgghhBCtHXJLCG5N9morr+z5keOomT0kjP9vWA8Gef+T
1Vm5bCqplgCJn8wLz85m+PSnGvz9d+LLpH9XyO1a80rPHeWbgpJWbW+pOMpvZ85jQws+36K8ndnD
7GdnM3z6bJZ/U/gfi1H943R2zI3fcxVby4XD/HbmPNLPVP6s292TM2cz6tmXf/L9VNtK2PDOyzw0
8ylGPZvI8o+ycevhU1sJK5cksvxbY8P0Koy88dpfGDX9KR6at4SVXxzGcoPqWWva5vLEZ6/rvxx/
8/jqXNV/pE/5qfuI/2RfcKs7893/8tDsv/zHYtOS+m254Eg7vaDyJ+lLb5ZzTVvOzf9up/N2E/HH
vzb4i355E3/LK7ltr5eqL1nYvr+AUnvrtv/6s01E//VbudgWNw25s+QWdr6slOVfl0ogxL9d6KCJ
xA0LcoyRqirJztpGyuvLyZn8HIvH9cLzdjpYWwmpr6/FGhnH/aEBLd5eUel4ePRIDD7qnyBzdjLT
P8Wo7suy2SMJNQT9x8Lk7nE22K6lsf0Z06hVaNQ+P/Fe7GSuX826Q/Dw9DkYKnNITX+HJLUPL47r
7nSCZeOa1WScLCW6QVuoZN1bq9lWqSNh3vNoSg6TkpaKVfUCf4oKbns9a2X90YWPIH50Lxr8Jp1K
TWiA+ubsU24xP22f9zOKzU1VT26ec82t1I5OF1WgaDqyeNIA9OhjUHoAACAASURBVB5gralm36GD
vLrh75x59L9J7H27tf8avvzkM965HMZHg1q3vX9QKE/d3VE6CyGTJUKIW5fWEMyg3tcGT/ff15fQ
d14hZfOHZA8K5v4Ot9tFsr3V23t6BTD+kTE/Wb7MlXYM4QO5v2fwfzRC9Y/TUuHedtiqWhHbn6fX
Xn/9J9+HpeI4G/eXED17AbP664G+GNRVzP9sB2dGB9NZUV33mdIz2SxcuZYCfNA0fq/kOJkn7cQm
zmBMqA/QHZvxBCk7symNCsa/jfWstfVHG9Cd+3v3usX6lFvHT9vn/dxic7PUk5vnXHPrtKNqzhSV
46/vy/BuHeu+RBrcLYjO/J03PzvIlJ7RdFHdTpdKl/jOVEXnfr7ufWnWxPbhvXsTLl2FkMkSIcTt
RU3UhIls3P8mmfkl3N/BgOVCIalpH5CZewor7enTbzgJ02Po7KWqHZgVsi4tg6zc45jtKvoMGkPi
1JFoqo4yZ8H7xCxazOTOjm/Sz3z3v8xZU8Rnb/0/LBVHmbvgQyIm3EPO9gPklVQRFj6c+OlDyEp7
n4zcU6AOInbmU0zurXdcslw0sW79+2QcOlGXl/jpMXT1Ul1Lb3IfcrbvJc/0D3SGPsTPfoz7O/rw
xtLlbDNdgrRX+O9DE/n7gjGUnskmJW0b2SeLsNpBZ7iHuJkzGNH5+u3fmx3EnOfXEp24gGmhAU7j
4iovjf1xXiJZJZfAuJpRO+9m9WsvoKsqaj79C0eZs/hDIiKDyNx+ACVkBB8umHLdxefhzI9J3rwL
Y2UN2oAgoic8Suz93fF0Vm7243XHGdPoy7Iz333M3Ld2MWz6XOLCq+q2K1t/fWxdXn46Kcurg/fm
yqap418zu1eLYv7GknlsPFnF1MSlzOrpONBv1v2FhTtPMWzq87z4YHcsFYWkrnmfbblFoPYnYtgY
EiYPx19x3Ao/8/nVWA1DiPIpIiPXRNTUeGLU+aRs3kVBySVQXd9enpw5G6M6mC9ff6F2oqCSrZs3
sfHQUQpMVRgM3Zk69VHG9Kyt8xXHmfn8KsoCIogbBhu3H8ZYBRGDYkicPhJ/5frYWk3HMeNDXMi1
AtT16IMm7VMKSux07nj9Vb355A9o+01i9UPBpC5d1eA9/44RrF4ejKaDT6OxjR1sgNLMpM25o6Sm
byUrtxACgoiODCZz8wkSli8gjONtqj9uTRo5a6NutSHnaTTVR4Ad48kDvLB+F9nGSgwhvYid/hgj
avtAp32YG3lKf20RG+3DWfP8SLxrXzv8xSoWblezZnkcWntL05/UbD9hqzh6A/s85/1RU5N3zbZ/
N/rX0nNHSU3PICu3CI2+O1HhKieTi0eZu+B9wiLvIW9/DuYqCAsfSOzUGO7xVTfb31zrJ8039Nxz
VcGhrcx+ay95JY78JMycQldfVYv70ht9rqnra1tw7m7JudZ1+3del1zFoyXxAqi2V/HdBRudhzSe
OPBgcEQQbx47yWlrNV38PDlnLODVzw+yr6gC2nkzLup+fj/UUPe5c8ZTvLc7l69/PIe1nS9THook
vncglvJTPLFqNxOfnMxvDI4vqU4c2cnvPrPw17lj0V8u4olVuxk8fgCl2bnsMlno1nMAix/qwq4v
9vK3Y+ewevjy+2nRTDI4eoZS0ylSvsplX+2+JkYN4elBjrxYyk/xRMp+pjw6gKN7D7PrVCmKbxde
jI2kl0cpT7zyGT/WXIHtn/M764P89aG7OX3iB5I+y+FQiQU82jO83wASx96D5vK567Z/MeIKT6Ts
4fHfTWaSXu00Ls7y0t/v+t7BUn6K36XsZ+L4cL786iCnPQz8z+8i8Sxp/nihhn3795K0/Timy1fQ
BnQkfnwk44K9a8vFRf5clE1T+cHUdFm7KhtXeRWtJ2uWCCFuCMXHH4OPCvNJM9hKSHl9FZkmNbEz
n2PF9DHYTu5g7sqPKbXheD9pFZklahLmLWD1s49iO5TBwrRsbG7sy1ZlJmO7mdh5i9n0ytNwchdz
FryCtccY1rz2CnHhsG79Js7YHIPK1JWvsK3Eh/hnF/DeoqfRVR5g/tW8XE3vs0Ienv4cW15bwjB1
EclvZVBqg7jEBUTr2xMx9Xk+WDCG6osmklauxegzkFVLlvPekufpoyoi+a1NmJrYvmHGXcTFRV4a
W7x8KQ8b7iRs9By2rPl/dFVVupX+tv2VxM2eQ8KE4U0MNvaSlJZD9PS5fPDachIidWxcv5asc1Wt
KjfTsR3Mf2sXfSY/Tfz9Db+RdBqrJgveeVm6Kpvmjr8lMY+K7A7UkJ11nGqg2mZiW64ZRaUjul8Q
1TYTyUtXkZFbhDakGwZ1FVnb32f++j0NnlG3GveSkV+JISCATp6FLFyzDSM6YiIfIEKvImf/Nhau
39vMc+1VbHjrFZI+20uBqQqtDxiNP5CUtJwNx0oaTYDsJXWniT6DBhKqspOd9SEp+5teb8BaWYpN
1R5tvWt/ReWDgh1zVdPredwTNYMXY0diULdv8n3/DgG1A5FKvsn8mNT9JvpEDm1ysubqgCRpZSpZ
JWrinp1L3DA929K/osx+/TfILa4/V6uRvQqLzU51vb+WtlFnbchVGk3m236JzPS9hI5+lNWL4gi1
HydlTW0ddLMPc5aniMh7sJ7cS0GFva4tZWYVETpoCHpanr7TfuIG9nlu7wf3239z+6q+aCR5ZSrZ
JT7EPzuX2HAftn2Wg83u7FxUyrYsM1NnL+CD5c9hqPqBhSs/dtrfXHcuu0HnHkfd/geZ23MIHf0Y
q56dhGI6wPyVH1zfl7lRp36Kc01Lzt1tOtc2OZHm7NzmIh4tjBeAzVrBmcvQRe/XxFfVapSaas5Y
bJwzHuGJt3fC3X15//lpLBvdhX3bd/BqXu26TKYfmP3uDk63C+LFJ/+b3/fzZdPHO9l+oZrSC+co
9VDTze9ah3r6VAmK313o23tQeuEcpppLbN9zjnGTYvjodw9wLnc/T6R8AWEDSE+cxhS/Kj7Ybayd
UDDyx3W7sXUI4eX4abz2UHf2bd/BOyfKayeBizFdruCDzAL6D4nkk8RH6c853tx7Dk/vjrw4fQBa
D19WzH2cvz50N+eMR/jd+r14h/Xh/bnTeHfaAE4f2ktSdtPbWy6cw+LhTTdfxWVcnOWl6UnwYkyX
q/hg12mGPziKv04ZhLfV+fGWGvNI2n6OKY/GsDVxGk91g+QPd5J7qcZ1ubkom6by41nSfFm7Khtn
eRVyZ4kQ4ibgiQqNCoxVds7k7yDL5EPi8rjaR3J6ERpyJ3MWf8jGkyOJ4QBZJWoSljzGoI5qwEDi
7BqyTGq3JksAIiZMZFBHH0DFMIMac9VAYh/siz8QMeweUvfnUFZlRzHtJdOoJnH5YwyqfTwobuqv
yVm6iUzjGKJrv0QfNvlRRvQ0ABA9ujsZa4ow2+3cUztwVMAx6LPbGfbQFMKGDan9RimAqQ/1IWtN
EVa7HX2j7esfj6u4TNU7z4t/o8cgPGv/fXVfLtMPuBq7RxnT39DMxX8JVkDr44/eNwD9uMdY3cOM
NkCN6eSuFpWb+eQuFm7eReiEOBIf7H5dPDwbxQqbHUu9QbHi1fBxLtNJ52UZE+C8bDRcf/yWitIW
xdwQPpxQ1WGMuQcwXoxAY/qBnJJLaHqMoU8HNcbvPiaz5BKhw2JZNT0CxV5C0tLlZO3/irzJEYTW
pXQnCYsWM76zDz9+u5b3AF1AEFGRYwibPIa8k6VoDUHNfHt+gI2HzCg+3Vix6Gn6dlBzOHMt89fv
ZWPaDqKXTqn3SMydxM+by5iOag4HlDI37QfMJ0vg/uAmJhHsKCo19Q9ZUatRqKKsLWuf2kpIWryE
zJJLaPR9iAnXXd3hdeVtzt9BTlUAixfNYJCvGnp3R6eqYn66+fo+p3H9cVNB1jrGZa1rOAk2exF/
us9wQ9qQqzRmhTTdR0RMncGs2nLRTDjKnDVmyux2bEYXfZiP6zzpQoYQqtrLtnwTfe8zUFpylGyT
itiZQS7bVVPpm47tbbafoOrG9XlaJ/3R9TcOuNf+m9uXJn8XOZUBLE6c4YhD7+5oKWHhdiezJSoP
oqc+yojaNTNip08ke8H7ZBljmozb1f6mvht17tHUXtYPmx7HvNp6ZAiAmUszyKyXH3f60smhPjf8
XHP12N09d+to2bnW9Zcszs5tW53GY5i9ZfGqGyyjpl8HpcmJFCt3oPmFjfc+O4x/3wdYVnuO7DJo
ENZTRazPLoYwb7Z8lkO1PowXx/fFXwX99UOx1RxBAUymUhRNAPp2V4dz1Rw1VtHREIg3cNRUAR6+
JD72AIP9PLGUK3gC/aMimR4WCFTj7QFKOw+givUff4MtbCiLHwx1xLRDONPzjvO3I6XEd/PjjKkU
PHx5+tFIfuXnCVTh73EHpR531E1I2DS+dPG92j69iX/0IUb1rn0MqUMogwMOcrSiusntT58qQfEN
pCM23vncWVwCXOblun7ZVIrNQ81TU0YyuoNj+5Q1zo/XctmCpeYK3u3U+Ht7My4qEk9fI56Xq3jP
Rf5cl03j/FSzfk1zZe26bJrNq8yVyGSJEOLmUG2vwlxpRxvgQ5npAAQEEVpvETtNQDAGNRhN/6CM
QlDrMARcG5V17j2czr0djym4pGqPru5iWYVGrUJR6a8NEFU+KIANO2WmQsrsZuY//9z1g6aSSghw
pFd/wT2N+k4Ue1GTEwCevgaih6nJ3r+LjJOFGE1F5J00gyrI5URPmcnsNC7oW5aXFqcfAEqD2F1P
GzKc6JADJC1dQEpAEBHhA4kZPYSuCvxgclJuFUcbDVz+QUbaNsCDsIA73bqY/SptOUt2FtX9O/rZ
JcQb6h+f87L0DHVdNk0efwti7u0bTHS4DymHjpNpLCF0fzZWIDryHrzBsb8mB+SVmKuqCL16ge+j
I6w2H7qQgYSps8nL383cxbtR1P5E9BtObDOLKJpPHqUMCO0xhLDaC/ewQcMxpGVjLCnEfNFeNymj
qBx3fAFofBwX9Naqpgd/GvWdYC9yfJOuXB1gVGFDhdKW5+qVABKXryTOdJy09PeZv/RNVi2fizn9
+vKOOmlG8QnCoFbXG+h3R4P5hvVVhvBoEib0bfAUkFavv2FtyGUaIXc22acZ9Hc2mKTCfgmrHWyu
+jAf13ny9NITHR7AuqwfsNxnoODQAWz6e4jQ+2DOann6zvoJS9WN6/Oc7adVfbOTfZlPmsFH1+B9
Q3gwmp3HnZyLfAjT+9QrNx06tZ08UyXRbpTLjT73KGofIgz+9WJ9NwZVFQUlVeDjfl9KqM9Pc65p
wbm7Lefa1pzbnMUjrKrl8TKdKkVp50sXzfWD99O1j2108ijnAxNMGV9/YtwDpb2CpcJCtaWU7UVV
DJ4Uhv/VPljlzW8eGgrU8LdTFrz13eveq75UwdEKG52HewM1nD5VgX9QWN1jKaUXzmHx8GVUN9+6
67ajF67QMdwXS3kxX56yYDq1gxGHdl6b2Km5QufwK02mV32pihMVV9Dr1UANZ05V4O0XVjeR5e/n
TfWxPBYeOozlcjWWS5f4seQSo4Z6N7F9NWdMFvz1vfnX5WK+cxIX13lprHb7u8MZ3sGxvevjhS53
92bi3UUseXsDf+sZRsKDAxg39B4s5afcyJ8bZVMvP87K2lJ+ildbmVchkyV1Ppk0REpTiP8gW1Up
5iroY7gTXPySn6JS4XJhtvp3xttrGl0cOe5iaZimk/2pu7Es8TEM6oYbaXwCoOoooAI3B4OWiuMs
XLyKAnUwUf16EdNvOFOr9rJwfZHrD7u1Fp37eWlt+lpV8zvwVAJ4ZsFSYgqOk7X/AJmHtjJ351bi
EhcT4U651RMW+RjR7CEl7UOie8zlHl/nBxbxUCyrBl26Nkg2BECV2e2ydK9smjr+lsRcRURkH5RD
X5G1fS8FJ4tQ1HcT3UNfW1cd8Qkb9ijxkcENTre6AB+ovFpf1bXtALw79GLFkgVs2/4V2w4dpqCk
lKysTeTkF7F6eRydGw8MVc4zqzSIl7qurSgq56d8xScAxX4Ka4O2V4kN1XXxbilPRYW+cy/ipj9K
9oJUMk9WEttEeRtNtGog1BKagGD6hgb/ZG2odWtOXt+nud2HVR51nSdU9Bk2ENvrB8i70IfMrCLC
Isfgr4C5Fek76ydi9Deuz3O2n2k9A1rRN7ehf3WzE7bZ7fX24bpcbvi5p/H+VE1Pdjot85/sXOP+
ubtN59oW1qU+LuJhzGppvGo4XVSO0qE3/o363epLxXyQXUznng8QeKkEi4eaLr71e+1qTpgsePv6
YbVasKLQq0MTXzfYL3H0QjVdHri2JkrphXOcq1GY2EFd9363BzrWrVNkOlWKEtCRcI3jEzZrBacv
wzi9Gkv5Oao9fFn2u4fo32iCR2mnBrvluvSs1lJMNXcwqoMa7DaOmqrQhznyU20p5oWUDM74deHx
iO50CfAFawF//PA4/fRNbG+v4rsLV+jSzxdbeYHTuDR1bA3y0mSsaug1IrAuVpbyCufHWztZER87
hdGFx3ln+0FmrzrF09NjGOVR7Fb+nJdNw/w4K+u25HV6Nz8ZoLSRrFkihLghF4jZn31KmTqImB56
tAYdlBRRUHntK0ZrSSHGKjDo70QTEARVZowl1664znz3v/w2MZUifgHYG6xRYDaWtHrRe61eh2I3
U4YafYcA9B0C0NiLSE3bRE6Ju88WqOoGcMZDO8izB7Fi0VzmPTKGEf27g6mk2e0b5MVFXNrqRqR/
5tge3thyGG1oL6ZNm8G7K5fysAEyswqdl5u90b2eqjsZNuweoidMoQ+FJKdnN7P+xrVYeXcw0Ldn
97o/faOF81yVpXtl03a6kCH08fHAeGgb2ZU16HoMJax2IkgXUnuHQkklhtBgQvUeZGzOIGP/iesm
/K5eZp05sod1n+1CCY/m3ZWvs+WV5wlTe2CrLGpyrRCtPhgNYMzfS94Fx/t5+3dhtNeg0Qej9Wrd
aFAbEIxOVULWyWsxM+fnYFUHtepndU3HtvLo7EVsrbe+xNU7VXRqVZPlrdProLIIY73jNhuPY3Wj
bd4IN6INuZeG+/m+MX0YaEP6EKauZOPOHeRUqonuF9Tq9J31Ezcynu7ux/2+2Vm7DoLKhnk1G4uc
1D3AXkmOqbLesZ3CaFc3uNukbVp47rFXOe50uJqfSjPmKtV17betdeqnPpe19Vzb0rrkKh4tjVe1
3cKh8it00fvScHnNarZ8toejNd48NaILCp7Yaq5guXylbotS02m+NF1hcL+7UDzuADzq3b1Qzd/e
T2fa+0corani9GXoXDc5UM2XmXlYa9f8sFjLOWGFXnXv13DaZMG7Q2DdhJXjUSFvevm1x7O9AlRj
4Q78vdX4e6s59+NBfrdmN6cv12C5XM7pBuldvVPFsb/qGgu5FdDtbscRm4qOc7TGn2XTI5nUL5T+
Bl8sp85hpentbdYKTJfvoFeAGlzExVVerptsuFzO6cse9NNfKw1Xx3v6xLdM++uXnLZDt+DuvPy7
/2ZKEGzJPofNRf6qXZVNE/lxVtb2NuS1WgYobSaP4QghWqzMWMj+I44Bs7Wqkpz9X5FxqIioqc87
7h5QjyQiYC9JK1MpmzwGnb2ItPQMrAF9iQkJQM9AovRbSVnzIZrpI1BKTrFu/V40/WYQ4tOJUB/Y
lraJsKkjsZmySd1ZCKqgVuVVHzKcKP0ukle+SdnkGPoE2NmYtpbsqu7E+qhcT8IoarRqyMk9zOEe
/mjUaqgqJCe/CF3IneTl7iD5sxOg0jkeX/BquH39u3M793Ael8Z3UbSUy/QrXaev8A+2pW/FqlIx
tV8QVmMO2SV2QiMD0IcEN1tugc3cteDpG0zc1CHMeWsTGZHd69aIaSq2fTsHtKksba7K5gbx9NIT
3U9P9s4iwINhkffUXeAYwkcQ4ZNNdv42piQex0ApeaZ/YFD1QqM0l6KZbTt3Y83KIXtQHzRVReRV
1aA1dGvwOEpdHAwDiemxg7T8E8x9fh5aHxVllZeAO5k6dST+0KoLJE/fYB4epCNpzWqUqomEVh0l
JT2HsNHP1f3iww/f7CCPICbf392NAdU9GNQZpK75EM3k4SiVhaRtzgD9QIYZmh5M6sJHEqFeTtLr
a4mbMBLFlE1qeg6gc9k2+3YOaFH+fqo25DINparZPqJVfZib8yWeip7ofv4s/Gw32pBo+tReyLcm
fWf9RP0PtLXPc76fxtWhbe2/c/hIogwHSH49FevkMbV17wdQ3e1ksqSGzPXvoKmaSIS6lLT0DDAM
IUrvA5VFbetoWnruAWz2S2xL+5Qo/WPo7IWkrvkQeowkqrMPXGhBnfo3tBPXh9+yc23fzgEc/mYH
Bc20f9fntubjoQ9oWbxs1gpOVNjorLlCrrEY2+UqTOUV7Dqcx66iGp6eHsOv/DypbhdEf81h3vzs
IN4P9sb/UjFJH+5GuXsA07v54W33oJdvNeu/OkLnB7tzJu8g7xyrYvqTd6PUlGOrucKJH4s50d7C
vj2H2WSqQuPbBf/2HlhMjomQbh3aX5vAaXS3g8lUgeLrWFfDv52BwQH7eWfjbrwf6gsXCnjz8+N0
HjKSbt4elBaWNkgP4NypcscaI+09sJoqHBOLly9ReskbpZ031Jxi17Hz+N/dnkNHDpK89zxKQAj+
Hh5YSxpub7lwjlIPb3p1UPDHeVwshaed5uW6yZILpZTSvsFEin+A8+O1Wv2wmnJ5M/M4Tw/pgmIt
5kS5DX1Pb/R6tdP82SxG52VTeH1+vH0Dmy3rzgG0Oq+eLTxvC5ksEULcAAX7NzF//7VuRGcIJn72
AmLuq721XQkgIXEu69Z/QOpbr2BTOdZgWDU5Br0CEED8vOdR1r/PkqVLsdKeiGGTSJwagacCcbMf
I3n9JhYmvYwhpC+x00eyLu14K6+4HPvSpH1I2vrXSLV7EBoewbJnH6396UpXCagZFjmQbeu/Ysl6
O39PnEh8ZCWpby0n1d7e8dOMibGkrtxEXkklfX0DGmz/3rN9G+TFWVwsVW0sGFfpuzO51HMky6ZX
krx5LY+nXUIToCNqwtPERznKtrlyU6qONptm134xxITksG7Np/SdN7D52C7+bZvKkn7Oyyb0Rn3Z
i4o+w4ag2fkh+HQnKsSn3kSKgcWLXiB1/Qdk5p8iz96ePoMmkjB9ON40XQade09ixWw1KZt3kJW1
G1TtCev3APHTJ9W2l8Zx8CF23vPo0j8l49BRCkqqMBjuYer0xxgTGtCm4xox9WnK7GtZt341Vu5k
WORjJEzoVbdFTtZWNtqHuHXR5ellIHHe06Su38SSpOXYVHfSp99wVkyPafq4agf0CYlPk7zmfZJX
voJG342oyHvI2PkPx7ehdpzWn5bk76dqQ677P3XzfURr+rAW9Bthw4ai3X6KPpEDr33j3Yr0nfUT
tvrrF7Wxz3PVHzXsZ1y0/wA3zhXPPoey/kNSXl+FEhBM9OQhbNtsctJk2hMxrBs5n60lo0pNRL8x
rJrq+GluS5v7mZade0J9QFH7MyxcRdLSRMdPGfcbzorpI6/ve1z1pf+OduKCq/JsfK79++Lfkr1z
K9sY2WT7d+fc1nw8WhYvxx0bYNq+g2+vhqxde3p1DeW18X0ZXLuuhmf7ABbPjCb54z28kJKL4nsX
oyMimT4kFH8AlTcJUyL588a9PLkql15du5DwZEztz8G25+moLizZvoNnj9zFuAfvY8plC1+2C0QD
nDaVgsaXzrULjNqsFk5b72Ccvt6dJqcq8O7QpXaNDG8SYh8i+eM9JL37d9D4Mm7sg3U/TWsyFYPv
tfSgmqNFjjVGNPz/7d17XFT1vvDxz96bWSgMASMKgwKWQwEnJEUp1CAVryl5NMrLydQM24Y7w63S
k+kj2hN2ocxL6fHxVpqFekzdRikRqGESed1im9EtkFwUB4kFyoy7ff4AcRAYwSxRvu/Xy9fLdfut
32UG1vryuwBuHQi914mtnyajPBtFzP0BxPUqJmHLdja1aUto9x7EDTSTcLB6qGW7684P/mf1hKie
dnbYa2zXS9aN8nKd6rxXp33tu2u7vPb6B3jr6SoSvjzAU+mpaLUuhHbtRWwvb+w12G43J88btE0j
+Wm0rbnpvDb397ao7w+Rm/f/uyVnUOYiEeJ3NGUKzJ0r9SCEuC2qLhZyOO8SAV3vq32Z//vXy5i1
zcLyt1/ER9FIJYkWofzicab+dQ2D415h3K8KUopb1iYFB0n8CuZNCJHKEKKliY+HFSuadOoTW75t
MdmWOUuEEEII0SKYK/NJfP8tEnYeJPd8CTnZ+1madBzv7r3wkECJEMKGg6mHCXj4PqkIIcQtI8Nw
hBBCCNEiOHmGMHfyBRKTPmZ80qWaiYJHEzs2pEnLTwshWq/+46KlEoQQt5QES4QQQgjRYvzHI0P4
/48MkYoQLZqTy4N8tOodqQghhLiLyTAcIYQQQgghhBBCCCsSLBFCCCGEEEIIIYSwIsESIYQQQggh
hBBCCCsSLBFCCCGEEEIIIYSw0mqDJYUn0nhn4Ws8ExVFeMQTPD0xhnc+SeOC+W4qpZm9qxJ4fMhQ
Hh8Xf8tSrVJPMXPcBJKMJi4Yd/F01Mt3VK3YyrN12W62ToQQQgghhBBC3Nla5Wo4OftXMH3eHh4a
OY64N6Lx0Crkncpg5XtLiS9VeHNq6F2xRGGVuZjk1GOETE0gtq/fb3IPrUcwcbPurDXt78Q8CyGE
EEIIIYT4/bS6YEmVOZ+1y/cQ8NxsXh/To3Z/O48RLHR3ZeM3KmbAnureJ4mL13Dw1Dl0XoFET49l
SJA7F4y7mD4vjZAghX2ZJ1HNjvQZH0PsqB5Nus7gVcq+IxVMSEikjzmLxOUbOJxfis7rAcZOjSGq
ZxcKT2xj+rwsFq55DV+tQpV6ijkTFxAyP5EoAyQtf5e1X2ah4khAzwhiZ03EV6vUKWvitDj2FZfC
8tcwq68RE/RTo2n2Uw7YLFNu5jYSlydxoshMQN9Q1Joe1pElUAAAH+RJREFUOGpRFglv7ubTpHdv
WC+5mbtIXPUZJ/IqCOgdhnIqC8P0RUwJcq+T7+p0dmPoAidOlaJo3YkcH0NUb69m1WFSXDT7vCey
eGooAOVFGUyftoFRf+3Hurf38mnSu2CjbNhoyxtdd0eLj5efjEIIIYQQQggJlrQmqjGLEyZX4hro
adHOEM40Q/X/y01HiZ+3Eo9BE9j0RldOpG5g6dwF6FYkYADU4mMUeb3GqukLUI3bmP7KSg729uMh
5fQNr1P7zmb9dD+oOM2c2A0YRkezaZAfxtTPSFy4AO07iTxkowy5mRvYmKnhvaRteJjzWTlvASt3
BPOWVfAHIHZJAurE1wiYtYhxQe4UnvjJdt00VibzMeLf3EbA+JeJ6+3K16uWsrK04ibS+IyA8VOI
692JfasSWZpfiqHRvPyI2nc2q+LDUU/sZs68Rei8EnioGXUYMjyQzavSKDSHolfAuH83Zu8wHmzX
pvY+5XkZjZbN1mcgoBl1ckdZsUJ+KgohhBBCCCFavVY3Z4laUYxZcURX2wtDZcOMCYRHDK3+N2QC
X+SZyMvcRZHuEWLGD0Cvc6f/qAn08yhle2Z1wEFxvI/IQcE4KaDzDsRbMZNnqrjhdWg68eTIYPQe
7hQd3o3qHUHMmHD0OnceHTWFsf6Q/M1pm2VQtFrMptNs/zKNIrM7M5asrRcouRmNlik7DdUjnOjh
PdDruvDk5CkEuDo2K40T+3eheg8lengoep0XkVNjeMhV23heXB9gwuhQnAB9QDiDu6hs/+pks+rQ
I2gA3upJ9hlNYDax75vTBAwLxjrntspmqy2bUydCCCGEEEIIIe4sra5nieLojmLOokg11wxb0RL5
6iL6mUE1HSV+xgYwgym/FNOpdEYO/aLO9Q/ll4I/oGiojbcoCooCWG58naJ1RadUX2jKL0XrHsq1
wTMKOg9X1KLSmu2Gx3Xog8axcLojazetZfIH76L1CiRmZixDAtybUAM2xoo0VqbsYrSuwdfyqXXE
47ohPzdKQ80vRevuWpuGvaLFQ6dpNCtarSta5do9tDotqqm650ZT69Be25V+PbVs/+ZH+mnNHC5y
JybIC0w/1p5tq2y22tJkbkadCCGEEEIIIYSQYElLpvMOJkC7ge07TxIyuXouDSedO05AueLK1fdz
nbsjHv5RrFoyEaeaa8tNxaB1xZy3p+a1vIH0m3Bd7bleWtRvfqqdIwVUivJL0XbRoigWMJtrQxtm
cylFqqU6vaJ8tP4RLF7zFFVqMduXL2Dl4s8YsmKazbIritJomtdCDQ0ELry0qKes8mmuwGRjgo6G
03BF/b60No0qs4rJZEHXSBqqWopJNeOjUwAzefkqul6OQEWT6xAUHhoUxsb3dvO1UgFB4QToFFRT
08pmqy2NO3Y1q05utx+KL8pPOyGEEEIIIcTvos2f/sif/vgHHOz+hJNih0ubO+8Py61uGI691ovo
6UM5sWkBsxauICXzKDnGk6R8+RnxMxaRp7jjoVPw7jkUbd4elm5Jo1BVycncxuRxMaw9Umwz/eZc
Z+gZgXL1XJOJvVvWsPmEhX6PPYCi64CWn9ieepQLpmK+XrWBPEv1y3heZhLTZyxir7EYtI7otI4o
2hv3KrGVpi2G3kPRFe1h5ZYMCk35bF+1hsPNnJ8joHcEivFzVu64msZKDpaqjZ5vLv2Rlau2kWsq
Zu+WNXxdpCWygXlmbNUhgM4/FAM/snbLaUIGBddb5chW2Wy15a2oEyGEEEIIIYS4G13+1y9UWP7F
+UtmTpdVcrj4IgXqJa788ssdU4ZWuXSwT++JrPrQj81bd7PxvUUYi0vRed1HSO+JrB8fgV5RgB7M
jZ9A4ntrGP3BIhTHDgyePJvonl6oxmONpu3k0fTrnLzDWTingsTlKxn9gYpHFz/GzonniQAdoCVm
cgQJqxYwermWPsOfoJ9Xdc+U/xgUTfSpd0mYNhHVosEQFE7czKE3LLeTrmujadq8ziOUuXNUEpav
YPyq6pVsQtxLm1XnTt7hzJ1VTMLyREYvhoDHQjG4/oS2kZE4imMnPNQMpo7bgNbbjwlzXuNRDy0X
jDSjDsFe8aJf704c/FKhn79rs8pmqy3t8frVdSKEEEIIIYQQrcEvQFFFFecqqujs7HBH9DT5Q+Tm
/f9uyRn8fFQv+WTdBapM+eSpjvh6VwcxqtSTzJq4lCeXJPCoR92JXi8YdzH1ld0sXLOo3nLI4ubI
MBwhhBBCCCFES9G+rYLXPQ719j+x5dsWk8c/SjOJ34OpKItZ0+L44kg+VWaVfZs2YFQ64K3TSuUI
IYQQQgghRCty/pKZM2UtexoDO2km8XvQBwwldvRpls6NIaFCwRAUTNz8aHyk44gQQgghhBBCtDqm
yxb+9IfKBnuYtAQyDEeIVkCG4QghhBBCCCFaovus5jCRYThCCCGEEEIIIYRo9c6UVbbIVXIkWCKE
EEIIIYQQQojb4hfgXGVVi8uXBEuEEEIIIYQQQghx25yrkGCJEEIIIYQQQgghRK1fgIuXzS0qTxIs
EUIIIYQQQgghxG1Vbr7SovIjwRIhhBBCCCGEEELcVpeu/KtF5afVBUsuGHfxdNTL5Ki/rovP/FcW
MTM1H4Cqsn8S9fx8Jq07ivVIq6rKfCZNfYdP8soBGPf8fEImvFbnX7+XlvHJsfMNpmv1sWFdwiL6
PL+MrDLLTeW34NRREj5YR9RLrxMyYT5PvLKMhL8d5YLlt6vrglPf8sRL625bW1epp5g5bgJJRpP8
5BFCCCGEEEKIFuxfv/y7ReXHTprk1jmeuoNND3vxrJ9rI2e0YXzcJJ7v4gKAuVIl7atdJLy/nnbx
Uxmob9vgVeWFOXxV4kKot8qm734ieOC9zcrXP37YxQvvHyJ4YF/mzhiKp4MdZ/KyWbZuB6+WaVg8
1h97aT4hhBBCCCGEELfJpX+1rOWDW2ewxFzB5uUL2JeaBbr7GDv1Zcb17sLnc6PZro1i+awB2APl
pqPMmrKUJ99JpL+31maSiqYNj/hpWbdqO6HxY7nfQVP/JA04aeyw11Qfs3d2ZcDjYWxNXc/xksuN
BkuO78sE726M71PEnKRMCvrei6emaUWtspznvzce4sGop3jrcd/a/e3cevGWm5Z1313CDNgDZ44d
JGFjKj8Uquj0nXh2bCRjAvXQlGNJezleeJkHuwei5OVw/7OTGHldHgtOHSVh3W4O5F1Ep+9MzLMj
GdZIYOnvqZ+xdNXnGItLwbED/UZPIXZMKKpxF9PnpRESpLAv8ySq2ZE+42OIHdUDeyA3cxuJy5M4
UWQmoG8oqll+6AghhKjLcvEEb09fxDlLdfdKO2d/pr81m46OSoPnn01fwtsrMmq3PR+NYeYLve7+
h9aLBRzL2MOhA9mcLThPeWVlzfOMBle9D519e9CrfxgGH5ffra2cDKOJnx/ZzOe+iyTN+yvf5lXn
305j4K218fJFEEIIYVOrnLPEXPETRvN9vLdmDXNHP8DmhQtIyVN5aHgwpsx08mresIsy92DyCOah
GwRKqtkRPiKSgQ5FzN94iKYtfGQhIzWDMxYt3fVtGg127PzhIqEDfbnfryf3W/LZerK0yWVV83I4
VqZlzMOd6h1r592V2KjuOAHlhdm8+kEq+j5D2LY4lri+etZ9sJGdeeU3PrZqL537DuWzt6MJ1xRy
oFCtd6/ysn8y5/0vcArsy7bFscT2dWXp+xvJKLlU79wLeWkkvLeLfrMS2b1nF8tnhXNw/Qr25VWn
qxYfo8hrKKs2JLHqjREcXr+Sg0Uq5XkZxL+5De+RL7N+QwIh5GMsrZBvuRBCCNEsFfywfQnxL/6V
Tz5O5qQx91qgBMBioTTPyKGUTSz7P1N5b8l2TBXy1wkhhBB3l1bZs0RxvI+YqePw1SkwfCKDv8oi
ef9pFg6PwMBcvj5Vim+QIwe/OknAwFjaNTFdewcXnp88gBcWfMF/d7+X5/2uj41cZtmCRJZZ7dK6
deL5Pz/FY24N9yopPHmI43jxYhdX7DXweHcXln2VzbOBvXBqQp7KKy9i1rShncPVpr7EuoTlLDt5
sXpT48Lc+Gj0x35A1Xcj9vGuOAGeA4dQeCyHnd8VoXdu/Fg7h4Oo+p682NcfJ2Dk2EjSjq2vl48z
xzIpcPbnrRHdaacBz4EDOL5vOVuPlRDa16tuEMcjmDdXBKL30FGlmjAr7mgVCybVDEp1+0UOCsZJ
AcU7EG9lG3mmCnT5aage4UQP74ET8OTkKezLTJBvuRBCCNFElooCtr2ZwLfGkiZfk3tgE++VnGf6
q8+hU6QOhRBCSLDkzg2WaDugq+0souDtruVwcSn2Wj8G93Rl45dHedLdlX15ChN6dmpW2u28uxMb
lc2r67YTPCOsXnWP/sskRntrKczLYdm6VPR9+zGyu76xRxYyvjpGYeFFRjx/zGr/RTIKuzU6bKdO
WR1cUCw5FFReqRka1JaRf57EAAuoZf/k1YRUsMCFQhWtmz/XnnE0tHPTUl5SzoXKxo+Va1S0btra
Y/aaNuid63+sLhSWY8o7xpDnM+vs795ALxQwc3DrUtbuyEJVXDEY3FHNZszUzEaraNBevaGioCiA
BUzZxWhdg6/lU+uIh1ae2oQQQoimqeDg6iUNBEo0dPD2oaOPD20VC6aCXIzZuVgv8FhuTGHjp0HE
PNPj1mbJwYWeYWGcM1c/A9xj8JFmEkIIIcGS34pZPUeRCj666hdzU6mKzt8VUAgYFIb6ZgYHMxVU
7zACPLTNTj+0byTDvltOwsaDKNaPEho72jlr8XRzxdMthIXO8OeEjSQ4T2JeH6966ZSXnGHnKXg5
bioD9dX5qLKorH9/PVv3nWFglP+Ngzd6XwIdUtma+hOhUb7YA07OrtVDbzQlKJqr57VB/a6kdv4S
uERhoYqTd1vauTV+zMlZi3pMrT1WZbnMhbIr9XrjtHNrg77Lo3z82sDaHjHlZaXgUL9+/566kpX7
LSxcs4FuHlqqTEeZOnFR3SBQA2XVemlRT/10LZ/miureKEIIIYS4obMZm9h2ILfOvg5d+zN+yjN0
dKn7m/fS+RySEhdxKO/a8Jzc9O0Yh3fF4HLr/lChUTyJmPScNI4QQggJlvwuwZKKfJL3n+Th4V3J
ydxDcp6W6Jn3AaDzDyVA+Zy16+GhqVFNGupS/ze7E89OHkLG3P8h19J4FXt2CSFuRDYz120lvEs0
j13XU+QfPxzkgpsvA7voaVc7WaoTj/e9l5e2HeQfjxu430FDTub34OWHbwOBHXuH9rz4bE8mvb+R
l0p6MrKPP52d7TiT9092/m0vuRoP9M523B/YDWXbFyR+5cHzD9/LP75L5ZNTV3g+qhP3O1gaPfag
gwXlb1+wLLU947u7kbZtFwfKLnP/dfnoHBiCNmlrdRp9fFFPHWLm+6mE/yWa2MD2ddvHVIGiOKJV
FKrMJpLXr8FYoRJiaSRKUsPQeyi6TUtZucWPsX07sW/9Gg6XVtBHvudCCCF++6cLzh7JICU5BaMx
l/JKy9WHAly9ffAPCiNseBjujo3/Iis+kkZKSga5RiPnyipx0vvg4+NDYP9IQgI8651vyvmCt/7v
R1yu2Q6b9Tb9Xc6QtHoLJ42F2LnpMfhH8NwLQ5qQ/Yt8uz2jTm8Rz0cnEfNCBA31Y23b3pcxs2Mx
zVxEbk1Z2zqDqawSaoIlPxd8y3szl3J1pjXX4Em8EhuB9fzvlooclr24kNyrE7h69yf+jWvBkaZP
8GrmTEYKKekZ5BpzKbc44ONvoFv/SHp1bd/kVmxuGwghhJBgyV1F63ofZK7h6U3nMNOBCbNm82hN
oMFe8aJfzw7s22FhcJDXTd+jnb4rcWNP8tK6HJvnhQ6MZNh3K3l3XSqBM4ZaPT2UsjP1DIF9x1oF
SmoCD917ok/ayNZjJcQ9rGfte4tg9AJeH+7X4D06dx/Ix/FebPrqB9at+4ycEhWd3oPQ7gP4bEQ3
PDUacO7KW3++TMLGLxix8TJ67048++fxjOriBNg+9vrki8zfuJUR6+DBh/3xdS7B6bo8O7n58vpf
BpCwbjcjNiahOLgwLOopXgys/wATMHwCfb5fxOSnRqB17USfkVFE+m+gKK8UbHSmcfIIZe4clYTl
Kxi/qoKA3mGEuJfKt1wIIcRvrIL9Hy5i815jA8eqJ0P9Ns/IwfQMJs2Pxb+9Y71Axf6PP2RzytE6
u8sLczlemMvxA+kc7D+J8f8VwT02/mhQXnCE1Us31QYvrpQUcrasaSX4ufAIx6x6idg5+PCfo8Ow
NeBX4xLApDlzKHdoT4f2LmhuV/Wbz7NnxRL+dsC6/svIPZpF7tEsjj06nLaWGweLbkUbCCGEkGDJ
HaudYSgfJQ21eY7OyxXvnj0IsDFL2bw3Ztf+3975XjYsn1HvnOC+T7Gv77XtDctnN/Ck4Upc/OwG
0533xqsNBwWc72XD8mvHoqdGkKw42iyTp7c/sZNtD9vpHBjCh2+ENOtYVdl50Hdjw9vV87NUVebz
0iuF+Di3wdOtF58vvra0Yme/7nz4RvcbtpG9tgsz3llJnRodM6DmP358atV+9ooXr29YW7utDxrA
4hUD5JsthBDid3Mm/aN6gZI2zm601VgoLymr7a1xpSybTxI38df5z1m9cFeQtmIB2w4U2rzHqZTV
LLtYyfTYyEYDGIc+/qjePv8w/yaV4VzO95RbP2sYwvBpwnCae3x8uee21n4F+1ck8rfrhg/Vqbu9
O26Yxq1qAyGEEBIsuStVmU3kGX9k49bThEyfUjM/R8tnzHNn8HD323LvCyU5/OWdTGL+MpYBXbSk
/e1r/qFxobOzPEYIIYRoDSo4nnKkdquNWygx86fUzvFhqShg57sJpGdXT5panvc9h3JHEe7rAkDx
ke0kW72kt3HrSlTMeAJ9PblUcIKdK5aQaazuHnIuawspR0IZFmRrWIkGn6490GnOYzRCN/+mDR25
lFe3C4q7v+ft6ynSDD/nZvDldYESv8GTiBoehpOmkpMZW0hak1InEHS9W98GQggh7gYSLLFiyt7D
rLgNeA+KYWyQ+x2T7/5jRty2e3t26Unc40W8+/5y4ivt8PXzZe5fhtBZI58nIYQQrYC5kp8rrMZ4
WCr4ubKyNliicfRkcMw0fLLL0Hl60tHHOghh5mRyRu2cI+DMf8a+QHef6kCKxjOAqJenca52XhAL
x1KOMCgootFAxoP/NZvnhgQ0P+hw/mLdB0QHh3rnWCoKWD3zFU6WNT6mpUPNvCS/l9z09DqBEM9H
JjHpmav1oxAY8RxtLedZ9vHRxhrwlreBEEKIu4MES6zog57if754SiqiWTQ89vhIHnt8pFSFEEKI
1kdxoGN7BzILq+f7uFx2lJUzp+KkN+AX5I9f1x4Y/H3pHkqDwYeTudd6dLRxC8Cgd6n7W9bFhwd9
HMjNrj7v59wjmMwRuDcwQsbO2Z/BYYab/XV+XeYsd0T15xrPW2050CuyR72idAyNxPPTbAoaKNOt
bgMhhBB3DwmWCCGEEKJ10WjqPgDdIC5gMdddhl6jWL8lOxI4PILko5useidAeaGRzEIjmcnV82V0
MAQTNjySkB6+tS/zVyrLMFn10rhcksGCiRk283KlrIDySjPuSv039bbtfXByvLk3+HvauwAl1/Jf
Uvm7NcevCctY9+qx0zjj7ly/R4ydgws6Bw0FDfSIudVtIIQQ4u4hwRIhhBBCtDqaZryuX7F9MbqA
SKbEVLB+RTKljfTIOGfMYvO7WaT4DyZm1nh0ClgsFc0OFFyxWLhksQD1X9TtnD1veuJRJ71znW2T
MYdL9KiTnsbRmbBnJvGgVYDi3NEvSM8qbNpNfoPOKpfqpKlgp2morR24xwFoYGWgW90GQggh7h4S
LBFCCCFEK6OhrfXLs6Xiupfu616or+tl0da5/ht559AxzA2OxJiVwbfp6WQfNdbpaXJVaXYySVuD
mDI6CI2m7su2nbM/w0aG0laxMRuGxpGOzg0f12hufhYN94BQXMmitGa73JhBdkEk3T2tV9tzxD80
vM51Z5XsZgRLGujZYankyq8Y8tO2TpHNDbajhUp+rrQ0Ume3tg2EEELcPSRYIoQQQohWRaOpHpZB
zfCLK5YSDhlLMPRoaOWYCs7WmRcDnNo7N5yw4oghNAJDaARgxpRrxHjiCIfS0zlptdrM2SNHYHQQ
dg5u6Bw0lNa8yNvhgF/Yzc+FYfcrgiVtPQMI9HYmvTafJez8aDuGl8dYLXPcQCDiuiFKder5uu0r
lotcuW6/pew8l35FW3Zw0UDh1fTLOFtQhr9L3ZVqrpSd51wjk9Le6jYQQghx9/ijVIEQQgghWhXF
AU9P64CHhYOrP+RYwcV6p57J2EJKdonVHgd8PK9NAHrp/An+58MlLJ33CnMnPMtbS9JqhnUo6HwC
CBkyhklzYvFxuBYisFRWByQ0ju3p7HNtjo3LZUfJzC6oc/+fc9OIn/Asc196hRWJH5KWfoTfZupV
F3qNDqON1Z7Sozt4+/UlGM9X1DvbYr7ID9s/ZPWarEZTtHNwqdPbxXKxgJ+vi62cPfK9zWV9b6Rj
Vx+rrUoykzOuC76YMSZv4Vwj17esNhBCCNGSSM+S61SpJlRFRzv5i4IQQghxl1Iw9O9Bm6wdtUNl
rpQZWT3zJTz9u9LZsz1QSXHOCU7lldS5so1bEP5Wq6XYOWg4m/U9p2p6JpQf+IidQe0ZFhZQ04PC
zNmjGRRbDQNp63l1xRpHuvXvQVp2Ss28KBbSli7B9eVphAR4cul8Dl+u3lQ9D0pJLidLcrF4hhLe
eLF+FfegUfzno0f5ZG9u7b5yYwbLpn+Pq7cPnX18aMtFzhpzOVtYUn8uFwDr3i0OLnRwgHM1nVUu
l2Sx7dM9jBgeyj2W8/yQkszOHUd/VZ47h0bQ4dOjtcGQc1mbWJp4kWHDw3B3tHAsZQs7k402UrjF
bSCEEEKCJXdloMScT/y0BYS8msATBh0XjLuY+spuFq5ZhK9WoidCCCHE3cI9KJLBj3zPtgPW821Y
KMjOoiC7sasc6D1pFDqrRwKNoy+DR/Zg2cdXV1CpJH3FQtJXO+DkoOFSZRlX6nRDcCZ8ZI/arY7B
o+jl/z3pNcvSXqnMZfPrf2VzA3dv49yVYYP9f8NaUej2TCznKhNIyapbL6V5RkrzjDavdvXvz/hn
rq2RrFHcCOzqyXGr4MvJ5NUkJK+u9zB65SZz3LZ9V4YN92f1jmuNVpCVzMqs5Lr30HBdO9BC20AI
IURLIcNwrJnNqKpZ6kEIIYS46zkSPuU1RjxqaNrpGmf6x8xhWFD9eU0MQ6Yw6eng65YjrqS87PpA
iQNhU2IJ97WaU0NxYdjLs+lpcLN5eztnA2PnTKOzy2/7xxuNY3uGxb7BpP8Kw6mJ17RxMzAiZg6v
zHmOjnXypxA4+hn83BqbS0VDt6dj6GVw/hU5VggcHcuYwV0bvceDT8cQFWajnVtYGwghhGgZWmXP
ktzMXSQu38Dh/FJ0Xg8wdmoMUT27sHbeAg6XnuPwtGmoCYkMdgTMFWxflcC+Lw+gKh0YPDmWmOFd
sQcKT6SRuHgNB0+dQ+cVSPT0WIYEuXPBuIvp89IweJWy70gFExbMQ9n3EWu/zELFkYCeEcTOmii9
VYQQQojbSXEh/IV4Aocc4duUdLKPnOCcVYDDTuOAzscHv+AwevUPxd1RafyFPXIG8aE57N+RzKET
OZhKSrhsqX5Zd9J7YggIJWx4fzq3d2wgQNGZsfPfJiQjhbSUdIzGAi5bLKBxoIPeE7+wwfTv38vm
RKu3uGIIHPICgf1Hk52VQWb695wtKMBUUsYVNHTw9qGjr4EuhgA6G3zo6Nm+0ZTaugQw6f+9wcGU
PRzPOoLRWIiT3oAhqAfdwsLw99GwJ+ujX5lfR0KeiaNj1z2kJGdgNBq5hAM+/kF06z+Y3kGdOfZR
ss0UWl4bCCGEuN3+ELl5/79bcgY/H9XrlqZXnpfB9GlLMYyOZsIgP4ypn5G4PovodxLp51HKrIkL
6PdGYu0wnMkvLEU3MJq5k8MwZSYR/14WcWsSCVBOM2vKIjwGTSB6ZFdOpG5g6frTxK1IwKCmM/mF
pRhGzyZ2mB+lP37GqytLeXNFHB7mfFbOW0BRrxjeGtNDPoHid/FD8UWpBCGEEEIIIUSLNn/fiRaT
l1Y3DMeYuRvVO4KYMeHode48OmoKY/0h+ZvTDZ6vaDoxYXwEPjodAb2HYtCZMZoqyMvcRZHuEWLG
D0Cvc6f/qAn08yhle+ZP1RdqOvHkyGD0Hu64umgxm06z/cs0iszuzFiyVgIlQgghhBBCCCFEC9Xq
huGY8kvRuodaTRivoPNwRS0qBVzrX6B1RHd1uIxSPdG8aqlOx3QqnZFDv6hz+kP5peAPitYVnVJ9
nT5oHAunO7J201omf/AuWq9AYmbGMiTAXT6BQgghhBBCCCFEC9PqgiU6Ly3qNz9hBuwBUCnKL0Xb
RdvoNQ0NT9W5O+LhH8WqJRNrJ0ArNxWD1hVz3p4655YX5aP1j2DxmqeoUovZvnwBKxd/xpAV0+QT
KIQQQgghhBBCtDCtbhiOoWcESt4elm5Jo9BkYu+WNWw+YaHfYw+AoqBVLBjzz1F+g0VxvHsORXs1
HVUlJ3Mbk8fFsPZIcb1z8zKTmD5jEXuNxTU9VRxRtNW9SnKOfM/fi1T5JIrflOaPf5BKEEIIIYQQ
QogmanXBEifvcBbOGUfRzpWMfmoiS7/6ibFz4nkiQIe94k6fnp1Ifn02S/efsp2ORw/mxk+gaOca
Ro94iqkLtxEyeTbRPb3qnfsfg6KJ7q2QMG0iAyPGsfGUO3EzhwKw8c1FbNx/Wj6J4jdl/ydZJVwI
IYQQQgghmqrVrYYjRGuU/3Ml5y+ZpSKEEEIIIYQQLZashiOE+F05KXZSCUIIIYQQQgjRRP8LOAhX
p+g1bw0AAAAASUVORK5CYII
Gael Varoquaux
2013-01-20 15:42:12 UTC
Permalink
Hi all,

I have been delaying joining this discussion because I didn't have enough
mental bandwidth to contribute something useful. Grant submission
deadline is passed, and we have made good progress on the release, so
I can try giving some input.
Post by Andreas Mueller
TL;DR version: do we want to plan for the future?
My TL;DR version: partly yes: we want a clear-cut 'vision' to attract
people and avoid going in random direction.

Thanks for raising these issue Andy, I believe that it is very important
that projects learn to define their scope and vision. This is what makes
a good product and a good community. On the other hand, I don't believe
in planned features for an open-source project, because features depend
on the goodwill of the developers, and these come on go. Also, I don't
think that an open-source project is a democracy governed by the users.
I believe that it is a doacracy. Thus having a list of features that
people want is not the right way to tackle the problem: the right way is
to find a compromise between a consistent product and excited
contributors that have itches to scratch.
Post by Andreas Mueller
There is some vague idea, pushed mainly by Gaël that we want to do a
1.0 in the not-so-far future, but there is no list of features that we
want
Yeah, that would be great. My biggest priority there is API freeze.
Post by Andreas Mueller
I'm thinking mainly about ranking, collaborative filtering, structured
prediction (in particular sequences),
metric learning, graphical models (and some more).
I would like all of these :). However, they might require specific APIs,
and thus I think that they should be carefully discussed on a case by
case, and deferred to after the 1.0 release. Our general API is our most
precious feature, after our code quality.

Thanks for moving the discussion forward, Andy, I'll answer more points
in the thread itself.

Gaël
Continue reading on narkive:
Loading...